1
|
Chen JJ, Xie H, Liu LZ, Guan H, You Z, Zou L, Jin HJ. Strengthening gold with dispersed nanovoids. Science 2024; 385:629-633. [PMID: 39116230 DOI: 10.1126/science.abo7579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Materials often fail prematurely or catastrophically under load while containing voids, posing a challenge to materials manufacturing. We found that a metal (gold) containing spherical voids with a fraction of up to 10% does not fracture prematurely in tension when the voids are shrunk to the submicron or nanometer scale. Instead, the dispersed nanovoids increase the strength and ductility of the material while simultaneously reducing its weight. Apart from the suppressed stress or strain concentration, such structure provides enormous surface area and promotes surface-dislocation interactions, which enable strengthening and additional strain hardening and thus toughening. Transforming voids from crack-like detrimental defects into a beneficial "ingredient" provides an inexpensive and environmentally friendly approach for the development of a new class of lightweight, high-performance materials.
Collapse
Affiliation(s)
- Jia-Ji Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, P.R. China
| | - Hui Xie
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P.R. China
| | - Ling-Zhi Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P.R. China
| | - Huai Guan
- Institute of Materials Plainification, Liaoning Academy of Materials, Shenyang, P.R. China
| | - Zesheng You
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, P.R. China
| | - Lijie Zou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P.R. China
| | - Hai-Jun Jin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P.R. China
| |
Collapse
|
2
|
Zhang W, Li Z, Dang R, Tran TT, Gallivan RA, Gao H, Greer JR. Suppressed Size Effect in Nanopillars with Hierarchical Microstructures Enabled by Nanoscale Additive Manufacturing. NANO LETTERS 2023; 23:8162-8170. [PMID: 37642465 DOI: 10.1021/acs.nanolett.3c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Studies on mechanical size effects in nanosized metals unanimously highlight both intrinsic microstructures and extrinsic dimensions for understanding size-dependent properties, commonly focusing on strengths of uniform microstructures, e.g., single-crystalline/nanocrystalline and nanoporous, as a function of pillar diameters, D. We developed a hydrogel infusion-based additive manufacturing (AM) technique using two-photon lithography to produce metals in prescribed 3D-shapes with ∼100 nm feature resolution. We demonstrate hierarchical microstructures of as-AM-fabricated Ni nanopillars (D ∼ 130-330 nm) to be nanoporous and nanocrystalline, with d ∼ 30-50 nm nanograins subtending each ligament in bamboo-like arrangements and pores with critical dimensions comparable to d. In situ nanocompression experiments unveil their yield strengths, σ, to be ∼1-3 GPa, above single-crystalline/nanocrystalline counterparts in the D range, a weak size dependence, σ ∝ D-0.2, and localized-to-homogenized transition in deformation modes mediated by nanoporosity, uncovered by molecular dynamics simulations. This work highlights hierarchical microstructures on mechanical response in nanosized metals and suggests small-scale engineering opportunities through AM-enabled microstructures.
Collapse
Affiliation(s)
- Wenxin Zhang
- Division of Engineering and Applied Sciences, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Zhi Li
- Institute of High Performance Computing, A*STAR, 138632, Singapore
| | - Ruoqi Dang
- Institute of High Performance Computing, A*STAR, 138632, Singapore
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 70 Nanyang Drive, 639798, Singapore
| | - Thomas T Tran
- Division of Engineering and Applied Sciences, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Rebecca A Gallivan
- Division of Engineering and Applied Sciences, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Huajian Gao
- Institute of High Performance Computing, A*STAR, 138632, Singapore
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 70 Nanyang Drive, 639798, Singapore
| | - Julia R Greer
- Division of Engineering and Applied Sciences, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
- Kavli Nanoscience Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Wittstock G, Bäumer M, Dononelli W, Klüner T, Lührs L, Mahr C, Moskaleva LV, Oezaslan M, Risse T, Rosenauer A, Staubitz A, Weissmüller J, Wittstock A. Nanoporous Gold: From Structure Evolution to Functional Properties in Catalysis and Electrochemistry. Chem Rev 2023; 123:6716-6792. [PMID: 37133401 PMCID: PMC10214458 DOI: 10.1021/acs.chemrev.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 05/04/2023]
Abstract
Nanoporous gold (NPG) is characterized by a bicontinuous network of nanometer-sized metallic struts and interconnected pores formed spontaneously by oxidative dissolution of the less noble element from gold alloys. The resulting material exhibits decent catalytic activity for low-temperature, aerobic total as well as partial oxidation reactions, the oxidative coupling of methanol to methyl formate being the prototypical example. This review not only provides a critical discussion of ways to tune the morphology and composition of this material and its implication for catalysis and electrocatalysis, but will also exemplarily review the current mechanistic understanding of the partial oxidation of methanol using information from quantum chemical studies, model studies on single-crystal surfaces, gas phase catalysis, aerobic liquid phase oxidation, and electrocatalysis. In this respect, a particular focus will be on mechanistic aspects not well understood, yet. Apart from the mechanistic aspects of catalysis, best practice examples with respect to material preparation and characterization will be discussed. These can improve the reproducibility of the materials property such as the catalytic activity and selectivity as well as the scope of reactions being identified as the main challenges for a broader application of NPG in target-oriented organic synthesis.
Collapse
Affiliation(s)
- Gunther Wittstock
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Marcus Bäumer
- University
of Bremen, Institute for Applied
and Physical Chemistry, 28359 Bremen, Germany
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
| | - Wilke Dononelli
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Bremen Center for
Computational Materials Science, Hybrid Materials Interfaces Group, Am Fallturm 1, Bremen 28359, Germany
| | - Thorsten Klüner
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Lukas Lührs
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
| | - Christoph Mahr
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Lyudmila V. Moskaleva
- University
of the Free State, Department of Chemistry, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Mehtap Oezaslan
- Technical
University of Braunschweig Institute of Technical Chemistry, Technical Electrocatalysis Laboratory, Franz-Liszt-Strasse 35a, 38106 Braunschweig, Germany
| | - Thomas Risse
- Freie
Universität Berlin, Institute of Chemistry
and Biochemistry, Arnimallee
22, 14195 Berlin, Germany
| | - Andreas Rosenauer
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Anne Staubitz
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| | - Jörg Weissmüller
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
- Helmholtz-Zentrum
Hereon, Institute of Materials Mechanics, 21502 Geesthacht, Germany
| | - Arne Wittstock
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| |
Collapse
|
4
|
Zhang Y, Su L, Xu J, Hu Y, Liu X, Ding S, Li J, Xia R. Molecular dynamics simulations of cold welding of nanoporous amorphous alloys: effects of welding conditions and microstructures. Phys Chem Chem Phys 2022; 24:25462-25479. [DOI: 10.1039/d2cp03624j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cold welding behaviors of nanoporous amorphous alloys investigated by molecular dynamics.
Collapse
Affiliation(s)
- Yuhang Zhang
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan 430072, China
| | - Lei Su
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan 430072, China
| | - Jianfei Xu
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan 430072, China
| | - Yiqun Hu
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan 430072, China
| | - Xiuming Liu
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan 430072, China
| | - Suhang Ding
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan 430072, China
| | - Jiejie Li
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Re Xia
- Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, Wuhan 430072, China
| |
Collapse
|