1
|
Yoshida K, Wada H. Indentation of an elastic arch on a frictional substrate: Pinning, unfolding, and snapping. Phys Rev E 2024; 109:045001. [PMID: 38755807 DOI: 10.1103/physreve.109.045001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/26/2024] [Indexed: 05/18/2024]
Abstract
In this study, we investigate the morphology and mechanics of a naturally curved elastic arch loaded at its center and frictionally supported at both ends on a flat, rigid substrate. Through systematic numerical simulations, we classify the observed behaviors of the arch into three configurations in terms of the arch geometry and the coefficient of static friction with the substrate. A linear theory is developed based on a planar elastica model combined with Amontons-Coulomb's frictional law, which quantitatively explains the numerically constructed phase diagram. The snapping transition of a loaded arch in a sufficiently large indentation regime, which involves a discontinuous force jump, is numerically observed. The proposed model problem enables a fully analytical investigation and demonstrates a rich variety of mechanical behaviors owing to the interplay among elasticity, geometry, and friction. This study provides a basis for understanding more common but complex systems, such as a cylindrical shell subjected to a concentrated load and simultaneously supported by frictional contact with surrounding objects.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hirofumi Wada
- Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
2
|
Wang J, Sotzing M, Lee M, Chortos A. Passively addressed robotic morphing surface (PARMS) based on machine learning. SCIENCE ADVANCES 2023; 9:eadg8019. [PMID: 37478174 PMCID: PMC10361599 DOI: 10.1126/sciadv.adg8019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Reconfigurable morphing surfaces provide new opportunities for advanced human-machine interfaces and bio-inspired robotics. Morphing into arbitrary surfaces on demand requires a device with a sufficiently large number of actuators and an inverse control strategy. Developing compact, efficient control interfaces and algorithms is vital for broader adoption. In this work, we describe a passively addressed robotic morphing surface (PARMS) composed of matrix-arranged ionic actuators. To reduce the complexity of the physical control interface, we introduce passive matrix addressing. Matrix addressing allows the control of N2 independent actuators using only 2N control inputs, which is substantially lower than traditional direct addressing (N2 control inputs). Using machine learning with finite element simulations for training, our control algorithm enables real-time, high-precision forward and inverse control, allowing PARMS to dynamically morph into arbitrary achievable predefined surfaces on demand. These innovations may enable the future implementation of PARMS in wearables, haptics, and augmented reality/virtual reality.
Collapse
Affiliation(s)
- Jue Wang
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Michael Sotzing
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Mina Lee
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Alex Chortos
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Cheng X, Fan Z, Yao S, Jin T, Lv Z, Lan Y, Bo R, Chen Y, Zhang F, Shen Z, Wan H, Huang Y, Zhang Y. Programming 3D curved mesosurfaces using microlattice designs. Science 2023; 379:1225-1232. [PMID: 36952411 DOI: 10.1126/science.adf3824] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Cellular microstructures form naturally in many living organisms (e.g., flowers and leaves) to provide vital functions in synthesis, transport of nutrients, and regulation of growth. Although heterogeneous cellular microstructures are believed to play pivotal roles in their three-dimensional (3D) shape formation, programming 3D curved mesosurfaces with cellular designs remains elusive in man-made systems. We report a rational microlattice design that allows transformation of 2D films into programmable 3D curved mesosurfaces through mechanically guided assembly. Analytical modeling and a machine learning-based computational approach serve as the basis for shape programming and determine the heterogeneous 2D microlattice patterns required for target 3D curved surfaces. About 30 geometries are presented, including both regular and biological mesosurfaces. Demonstrations include a conformable cardiac electronic device, a stingray-like dual mode actuator, and a 3D electronic cell scaffold.
Collapse
Affiliation(s)
- Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zhichao Fan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P.R. China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Tianqi Jin
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zengyao Lv
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Lan
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Renheng Bo
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yitong Chen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| | - Fan Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Huanhuan Wan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P.R. China
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Civil & Environmental Engineering, Mechanical Engineering, and Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
4
|
Bai Y, Wang H, Xue Y, Pan Y, Kim JT, Ni X, Liu TL, Yang Y, Han M, Huang Y, Rogers JA, Ni X. A dynamically reprogrammable surface with self-evolving shape morphing. Nature 2022; 609:701-708. [PMID: 36131035 DOI: 10.1038/s41586-022-05061-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Dynamic shape-morphing soft materials systems are ubiquitous in living organisms; they are also of rapidly increasing relevance to emerging technologies in soft machines1-3, flexible electronics4,5 and smart medicines6. Soft matter equipped with responsive components can switch between designed shapes or structures, but cannot support the types of dynamic morphing capabilities needed to reproduce natural, continuous processes of interest for many applications7-24. Challenges lie in the development of schemes to reprogram target shapes after fabrication, especially when complexities associated with the operating physics and disturbances from the environment can stop the use of deterministic theoretical models to guide inverse design and control strategies25-30. Here we present a mechanical metasurface constructed from a matrix of filamentary metal traces, driven by reprogrammable, distributed Lorentz forces that follow from the passage of electrical currents in the presence of a static magnetic field. The resulting system demonstrates complex, dynamic morphing capabilities with response times within 0.1 second. Implementing an in situ stereo-imaging feedback strategy with a digitally controlled actuation scheme guided by an optimization algorithm yields surfaces that can follow a self-evolving inverse design to morph into a wide range of three-dimensional target shapes with high precision, including an ability to morph against extrinsic or intrinsic perturbations. These concepts support a data-driven approach to the design of dynamic soft matter, with many unique characteristics.
Collapse
Affiliation(s)
- Yun Bai
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Heling Wang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China. .,Institute of Flexible Electronics Technology of THU Jiaxing, Zhejiang, China.
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Yuxin Pan
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jin-Tae Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Tzu-Li Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Mengdi Han
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.,Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA. .,Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Department of Chemistry, Northwestern University, Evanston, IL, USA. .,Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
| | - Xiaoyue Ni
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA. .,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA. .,Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| |
Collapse
|