1
|
Picard LRB, Park AJ, Patenotte GE, Gebretsadkan S, Wellnitz D, Rey AM, Ni KK. Entanglement and iSWAP gate between molecular qubits. Nature 2024:10.1038/s41586-024-08177-3. [PMID: 39537926 DOI: 10.1038/s41586-024-08177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Quantum computation and simulation rely on long-lived qubits with controllable interactions. Trapped polar molecules have been proposed as a promising quantum computing platform, offering scalability and single-particle addressability while still leveraging inherent complexity and strong couplings of molecules1-5. Recent progress in the single quantum state preparation and coherence of the hyperfine-rotational states of individually trapped molecules allows them to serve as promising qubits6-11, with intermolecular dipolar interactions creating entanglement12,13. However, universal two-qubit gates have not been demonstrated with molecules. Here we harness intrinsic molecular resources to implement a two-qubit iSWAP gate using individually trapped X1Σ+ NaCs molecules. By allowing the molecules to interact for 664 μs at a distance of 1.9 μm, we create a maximally entangled Bell state with a fidelity of 94(3)% in trials in which both molecules are present. Using motion-rotation coupling, we measure residual excitation of the lowest few motional states along the axial trapping direction and find them to be the primary source of decoherence. Finally, we identify two non-interacting hyperfine states within the ground rotational level in which we encode a qubit. The interaction is toggled by transferring between interacting and non-interacting states to realize an iSWAP gate. We verify the gate performance by measuring its logical truth table.
Collapse
Affiliation(s)
- Lewis R B Picard
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Annie J Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.
| | - Gabriel E Patenotte
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Samuel Gebretsadkan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - David Wellnitz
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA
| | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.
| |
Collapse
|
2
|
Hermsmeier R, Rey AM, Tscherbul TV. Magnetically Tunable Electric Dipolar Interactions of Ultracold Polar Molecules in the Quantum Ergodic Regime. PHYSICAL REVIEW LETTERS 2024; 133:143403. [PMID: 39423408 DOI: 10.1103/physrevlett.133.143403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/13/2024] [Indexed: 10/21/2024]
Abstract
By leveraging the hyperfine interaction between the rotational and nuclear spin degrees of freedom, we demonstrate extensive magnetic control over the electric dipole moments, electric dipolar interactions, and ac Stark shifts of ground-state alkali-dimer molecules such as KRb(X^{1}Σ^{+}). The control is enabled by narrow avoided crossings and the highly ergodic character of molecular eigenstates at low magnetic fields, offering a general and robust way of continuously tuning the intermolecular electric dipolar interaction for applications in quantum simulation, quantum sensing, and dipolar spinor physics.
Collapse
|
3
|
Miller C, Carroll AN, Lin J, Hirzler H, Gao H, Zhou H, Lukin MD, Ye J. Two-axis twisting using Floquet-engineered XYZ spin models with polar molecules. Nature 2024; 633:332-337. [PMID: 39261616 DOI: 10.1038/s41586-024-07883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Polar molecules confined in an optical lattice are a versatile platform to explore spin-motion dynamics based on strong, long-range dipolar interactions1,2. The precise tunability3 of Ising and spin-exchange interactions with both microwave and d.c. electric fields makes the molecular system particularly suitable for engineering complex many-body dynamics4-6. Here we used Floquet engineering7 to realize new quantum many-body systems of polar molecules. Using a spin encoded in the two lowest rotational states of ultracold 40K87Rb molecules, we mutually validated XXZ spin models tuned by a Floquet microwave pulse sequence against those tuned by a d.c. electric field through observations of Ramsey contrast dynamics. This validation sets the stage for the realization of Hamiltonians inaccessible with static fields. In particular, we observed two-axis twisting8 mean-field dynamics, generated by a Floquet-engineered XYZ model using itinerant molecules in two-dimensional layers. In the future, Floquet-engineered Hamiltonians could generate entangled states for molecule-based precision measurement9 or could take advantage of the rich molecular structure for quantum simulation of multi-level systems10,11.
Collapse
Affiliation(s)
- Calder Miller
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA.
| | - Annette N Carroll
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA
| | - Junyu Lin
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA
| | - Henrik Hirzler
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA
| | - Haoyang Gao
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, MA, USA
- QuEra Computing, Boston, MA, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
4
|
Walraven EF, Tarbutt MR, Karman T. Scheme for Deterministic Loading of Laser-Cooled Molecules into Optical Tweezers. PHYSICAL REVIEW LETTERS 2024; 132:183401. [PMID: 38759201 DOI: 10.1103/physrevlett.132.183401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/27/2024] [Indexed: 05/19/2024]
Abstract
We propose to repeatedly load laser-cooled molecules into optical tweezers, and transfer them to storage states that are rotationally excited by two additional quanta. Collisional loss of molecules in these storage states is suppressed, and a dipolar blockade prevents the accumulation of more than one molecule. Applying three cycles loads tweezers with single molecules at an 80% success rate, limited by residual collisional loss. This improved loading efficiency reduces the time needed for rearrangement of tweezer arrays, which would otherwise limit the scalability of neutral molecule quantum computers.
Collapse
Affiliation(s)
- Etienne F Walraven
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Michael R Tarbutt
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Tijs Karman
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Zhang C, Rittenhouse ST, Tscherbul TV, Sadeghpour HR, Hutzler NR. Sympathetic Cooling and Slowing of Molecules with Rydberg Atoms. PHYSICAL REVIEW LETTERS 2024; 132:033001. [PMID: 38307061 DOI: 10.1103/physrevlett.132.033001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/05/2023] [Indexed: 02/04/2024]
Abstract
We propose to sympathetically slow and cool polar molecules in a cold, low-density beam using laser-cooled Rydberg atoms. The elastic collision cross sections between molecules and Rydberg atoms are large enough to efficiently thermalize the molecules even in a low-density environment. Molecules traveling at 100 m/s can be stopped in under 30 collisions with little inelastic loss. Our method does not require photon scattering from the molecules and can be generically applied to complex species for applications in precision measurement, quantum information science, and controlled chemistry.
Collapse
Affiliation(s)
- Chi Zhang
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Seth T Rittenhouse
- Department of Physics, the United States Naval Academy, Annapolis, Maryland 21402, USA
- ITAMP, Center for Astrophysics | Harvard & Smithsonian Cambridge, Massachusetts 02138, USA
| | - Timur V Tscherbul
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - H R Sadeghpour
- ITAMP, Center for Astrophysics | Harvard & Smithsonian Cambridge, Massachusetts 02138, USA
| | - Nicholas R Hutzler
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
6
|
Park AJ, Picard LRB, Patenotte GE, Zhang JT, Rosenband T, Ni KK. Extended Rotational Coherence of Polar Molecules in an Elliptically Polarized Trap. PHYSICAL REVIEW LETTERS 2023; 131:183401. [PMID: 37977633 DOI: 10.1103/physrevlett.131.183401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/02/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
We demonstrate long rotational coherence of individual polar molecules in the motional ground state of an optical trap. In the present, previously unexplored regime, the rotational eigenstates of molecules are dominantly quantized by trapping light rather than static fields, and the main source of decoherence is differential light shift. In an optical tweezer array of NaCs molecules, we achieve a three-orders-of-magnitude reduction in differential light shift by changing the trap's polarization from linear to a specific "magic" ellipticity. With spin-echo pulses, we measure a rotational coherence time of 62(3) ms (one pulse) and 250(40) ms (up to 72 pulses), surpassing the projected duration of resonant dipole-dipole entangling gates by orders of magnitude.
Collapse
Affiliation(s)
- Annie J Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Lewis R B Picard
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Gabriel E Patenotte
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Jessie T Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | | | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
7
|
Takahashi Y, Zhang C, Jadbabaie A, Hutzler NR. Engineering Field-Insensitive Molecular Clock Transitions for Symmetry Violation Searches. PHYSICAL REVIEW LETTERS 2023; 131:183003. [PMID: 37977643 DOI: 10.1103/physrevlett.131.183003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023]
Abstract
Molecules are a powerful platform to probe fundamental symmetry violations beyond the standard model, as they offer both large amplification factors and robustness against systematic errors. As experimental sensitivities improve, it is important to develop new methods to suppress sensitivity to external electromagnetic fields, as limits on the ability to control these fields are a major experimental concern. Here we show that sensitivity to both external magnetic and electric fields can be simultaneously suppressed using engineered radio frequency, microwave, or two-photon transitions that maintain large amplification of CP-violating effects. By performing a clock measurement on these transitions, CP-violating observables including the electron electric dipole moment, nuclear Schiff moment, and magnetic quadrupole moment can be measured with suppression of external field sensitivity of ≳100 generically, and even more in many cases. Furthermore, the method is compatible with traditional Ramsey measurements, offers internal co-magnetometry, and is useful for systems with large angular momentum commonly present in molecular searches for nuclear CP violation.
Collapse
Affiliation(s)
- Yuiki Takahashi
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Chi Zhang
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Arian Jadbabaie
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Nicholas R Hutzler
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Lu J, Ginis V, Lim SWD, Capasso F. Helicity and Polarization Gradient Optical Trapping in Evanescent Fields. PHYSICAL REVIEW LETTERS 2023; 131:143803. [PMID: 37862648 DOI: 10.1103/physrevlett.131.143803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 10/22/2023]
Abstract
Optical traps using nonconservative forces instead of conservative intensity-gradient forces expand the trap parameter space. Existing traps with nonconservative helicity-dependent forces are limited to chiral particles and fields with helicity gradients. We relax these constraints by proposing helicity and polarization gradient optical trapping of achiral particles in evanescent fields. We further propose an optical switching system in which a microsphere is trapped and optically manipulated around a microfiber using polarization gradients. Our Letter deepens the understanding of light-matter interactions in polarization gradient fields and expands the range of compatible particles and stable trapping fields.
Collapse
Affiliation(s)
- Jinsheng Lu
- Harvard John A. Paulson School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Vincent Ginis
- Harvard John A. Paulson School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
- Data Lab and Applied Physics, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Soon Wei Daniel Lim
- Harvard John A. Paulson School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Federico Capasso
- Harvard John A. Paulson School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
9
|
Holland CM, Lu Y, Cheuk LW. Bichromatic Imaging of Single Molecules in an Optical Tweezer Array. PHYSICAL REVIEW LETTERS 2023; 131:053202. [PMID: 37595242 DOI: 10.1103/physrevlett.131.053202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/04/2023] [Indexed: 08/20/2023]
Abstract
We report on a novel bichromatic fluorescent imaging scheme for background-free detection of single CaF molecules trapped in an optical tweezer array. By collecting fluorescence on one optical transition while using another for laser cooling, we achieve an imaging fidelity of 97.7(2)% and a nondestructive detection fidelity of 95.5(6)%. Notably, these fidelities are achieved with a modest photon budget, suggesting that the method could be extended to more complex laser-coolable molecules with less favorable optical cycling properties. We also report on a framework and new methods to characterize various loss mechanisms that occur generally during fluorescent detection of trapped molecules, including two-photon decay and admixtures of higher excited states that are induced by the trapping light. In particular, we develop a novel method to dispersively measure transition matrix elements between electronically excited states. The method could also be used to measure arbitrarily small Franck-Condon factors between electronically excited states, which could significantly aid in ongoing efforts to laser cool complex polyatomic molecules.
Collapse
Affiliation(s)
- Connor M Holland
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yukai Lu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Lawrence W Cheuk
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
10
|
Guttridge A, Ruttley DK, Baldock AC, González-Férez R, Sadeghpour HR, Adams CS, Cornish SL. Observation of Rydberg Blockade Due to the Charge-Dipole Interaction between an Atom and a Polar Molecule. PHYSICAL REVIEW LETTERS 2023; 131:013401. [PMID: 37478436 DOI: 10.1103/physrevlett.131.013401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 07/23/2023]
Abstract
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers. The molecule is formed by magnetoassociation of a Rb+Cs atom pair and subsequently transferred to the rovibrational ground state with an efficiency of 91(1)%. Species-specific tweezers are used to control the separation between the atom and molecule. The charge-dipole interaction causes blockade of the transition to the Rb(52s) Rydberg state, when the atom-molecule separation is set to 310(40) nm. The observed excitation dynamics are in good agreement with simulations using calculated interaction potentials. Our results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
Collapse
Affiliation(s)
- Alexander Guttridge
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Daniel K Ruttley
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Archie C Baldock
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Rosario González-Férez
- Instituto Carlos I de Física Teórica y Computacional, and Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain
| | - H R Sadeghpour
- ITAMP, Center for Astrophysics | Harvard & Smithsonian, Cambridge, Massachusetts 02138, USA
| | - C S Adams
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Simon L Cornish
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
11
|
Collopy AL, Schmidt J, Leibfried D, Leibrandt DR, Chou CW. Effects of an Oscillating Electric Field on and Dipole Moment Measurement of a Single Molecular Ion. PHYSICAL REVIEW LETTERS 2023; 130:223201. [PMID: 37327411 DOI: 10.1103/physrevlett.130.223201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 06/18/2023]
Abstract
We characterize and model the Stark effect due to the radio-frequency (rf) electric field experienced by a molecular ion in an rf Paul trap, a leading systematic in the uncertainty of the field-free rotational transition. The ion is deliberately displaced to sample different known rf electric fields and measure the resultant shifts in transition frequencies. With this method, we determine the permanent electric dipole moment of CaH^{+}, and find close agreement with theory. The characterization is performed by using a frequency comb which probes rotational transitions in the molecular ion. With improved coherence of the comb laser, a fractional statistical uncertainty for a transition line center of as low as 4.6×10^{-13} was achieved.
Collapse
Affiliation(s)
- Alejandra L Collopy
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Julian Schmidt
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Dietrich Leibfried
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - David R Leibrandt
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Chin-Wen Chou
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
12
|
Hallas C, Vilas NB, Anderegg L, Robichaud P, Winnicki A, Zhang C, Cheng L, Doyle JM. Optical Trapping of a Polyatomic Molecule in an ℓ-Type Parity Doublet State. PHYSICAL REVIEW LETTERS 2023; 130:153202. [PMID: 37115898 DOI: 10.1103/physrevlett.130.153202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
We report optical trapping of a polyatomic molecule, calcium monohydroxide (CaOH). CaOH molecules from a magneto-optical trap are sub-Doppler laser cooled to 20(3) μK in free space and loaded into an optical dipole trap. We attain an in-trap molecule number density of 3(1)×10^{9} cm^{-3} at a temperature of 57(8) μK. Trapped CaOH molecules are optically pumped into an excited vibrational bending mode, whose ℓ-type parity doublet structure is a potential resource for a wide range of proposed quantum science applications with polyatomic molecules. We measure the spontaneous, radiative lifetime of this bending mode state to be ∼0.7 s.
Collapse
Affiliation(s)
- Christian Hallas
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Nathaniel B Vilas
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Loïc Anderegg
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Paige Robichaud
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Andrew Winnicki
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
13
|
Tscherbul TV, Ye J, Rey AM. Robust Nuclear Spin Entanglement via Dipolar Interactions in Polar Molecules. PHYSICAL REVIEW LETTERS 2023; 130:143002. [PMID: 37084438 DOI: 10.1103/physrevlett.130.143002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
We propose a general protocol for on-demand generation of robust entangled states of nuclear and/or electron spins of ultracold ^{1}Σ and ^{2}Σ polar molecules using electric dipolar interactions. By encoding a spin-1/2 degree of freedom in a combined set of spin and rotational molecular levels, we theoretically demonstrate the emergence of effective spin-spin interactions of the Ising and XXZ forms, enabled by efficient magnetic control over electric dipolar interactions. We show how to use these interactions to create long-lived cluster and squeezed spin states.
Collapse
Affiliation(s)
- Timur V Tscherbul
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
14
|
Tunable itinerant spin dynamics with polar molecules. Nature 2023; 614:70-74. [PMID: 36725993 DOI: 10.1038/s41586-022-05479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/25/2022] [Indexed: 02/03/2023]
Abstract
Strongly interacting spins underlie many intriguing phenomena and applications1-4 ranging from magnetism to quantum information processing. Interacting spins combined with motion show exotic spin transport phenomena, such as superfluidity arising from pairing of spins induced by spin attraction5,6. To understand these complex phenomena, an interacting spin system with high controllability is desired. Quantum spin dynamics have been studied on different platforms with varying capabilities7-13. Here we demonstrate tunable itinerant spin dynamics enabled by dipolar interactions using a gas of potassium-rubidium molecules confined to two-dimensional planes, where a spin-1/2 system is encoded into the molecular rotational levels. The dipolar interaction gives rise to a shift of the rotational transition frequency and a collision-limited Ramsey contrast decay that emerges from the coupled spin and motion. Both the Ising and spin-exchange interactions are precisely tuned by varying the strength and orientation of an electric field, as well as the internal molecular state. This full tunability enables both static and dynamical control of the spin Hamiltonian, allowing reversal of the coherent spin dynamics. Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics using the strong, tunable dipolar interaction.
Collapse
|
15
|
Christakis L, Rosenberg JS, Raj R, Chi S, Morningstar A, Huse DA, Yan ZZ, Bakr WS. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 2023; 614:64-69. [PMID: 36725998 DOI: 10.1038/s41586-022-05558-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 02/03/2023]
Abstract
Synthetic quantum systems with interacting constituents play an important role in quantum information processing and in explaining fundamental phenomena in many-body physics. Following impressive advances in cooling and trapping techniques, ensembles of ultracold polar molecules have emerged as a promising platform that combines several advantageous properties1-11. These include a large set of internal states with long coherence times12-17 and long-range, anisotropic interactions. These features could enable the exploration of intriguing phases of correlated quantum matter, such as topological superfluids18, quantum spin liquids19, fractional Chern insulators20 and quantum magnets21,22. Probing correlations in these phases is crucial to understanding their properties, necessitating the development of new experimental techniques. Here we use quantum gas microscopy23 to measure the site-resolved dynamics of quantum correlations of polar 23Na87Rb molecules confined in a two-dimensional optical lattice. By using two rotational states of the molecules, we realize a spin-1/2 system with dipolar interactions between particles, producing a quantum spin-exchange model21,22,24,25. We study the evolution of correlations during the thermalization process of an out-of-equilibrium spin system for both spatially isotropic and anisotropic interactions. Furthermore, we examine the correlation dynamics of a spin-anisotropic Heisenberg model engineered from the native spin-exchange model by using periodic microwave pulses26-28. These experiments push the frontier of probing and controlling interacting systems of ultracold molecules, with prospects for exploring new regimes of quantum matter and characterizing entangled states that are useful for quantum computation29,30 and metrology31.
Collapse
Affiliation(s)
| | | | - Ravin Raj
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Sungjae Chi
- Department of Physics, Princeton University, Princeton, NJ, USA
| | | | - David A Huse
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Zoe Z Yan
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Waseem S Bakr
- Department of Physics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
16
|
Lin J, He J, Jin M, Chen G, Wang D. Seconds-Scale Coherence on Nuclear Spin Transitions of Ultracold Polar Molecules in 3D Optical Lattices. PHYSICAL REVIEW LETTERS 2022; 128:223201. [PMID: 35714238 DOI: 10.1103/physrevlett.128.223201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Ultracold polar molecules (UPMs) are emerging as a novel and powerful platform for fundamental applications in quantum science. Here, we report characterization of the coherence between nuclear spin levels of ultracold ground-state sodium-rubidium molecules loaded into a 3D optical lattice with a nearly photon scattering limited trapping lifetime of 9(1) seconds. After identifying and compensating the main sources of decoherence, we achieve a maximum nuclear spin coherence time of T_{2}^{*}=3.3(6) s with two-photon Ramsey spectroscopy. Furthermore, based on the understanding of the main factor limiting the coherence of the two-photon Rabi transition, we obtain a Rabi line shape with linewidth below 0.8 Hz. The simultaneous realization of long lifetime and coherence time, and ultrahigh spectroscopic resolution in our system unveils the great potentials of Ultracold polar molecules in quantum simulation, computation, and metrology.
Collapse
Affiliation(s)
- Junyu Lin
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Junyu He
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mucan Jin
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Guanghua Chen
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Dajun Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
17
|
Vilas NB, Hallas C, Anderegg L, Robichaud P, Winnicki A, Mitra D, Doyle JM. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 2022; 606:70-74. [PMID: 35650357 DOI: 10.1038/s41586-022-04620-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022]
Abstract
Laser cooling and trapping1,2, and magneto-optical trapping methods in particular2, have enabled groundbreaking advances in science, including Bose-Einstein condensation3-5, quantum computation with neutral atoms6,7 and high-precision optical clocks8. Recently, magneto-optical traps (MOTs) of diatomic molecules have been demonstrated9-12, providing access to research in quantum simulation13 and searches for physics beyond the standard model14. Compared with diatomic molecules, polyatomic molecules have distinct rotational and vibrational degrees of freedom that promise a variety of transformational possibilities. For example, ultracold polyatomic molecules would be uniquely suited to applications in quantum computation and simulation15-17, ultracold collisions18, quantum chemistry19 and beyond-the-standard-model searches20,21. However, the complexity of these molecules has so far precluded the realization of MOTs for polyatomic species. Here we demonstrate magneto-optical trapping of a polyatomic molecule, calcium monohydroxide (CaOH). After trapping, the molecules are laser cooled in a blue-detuned optical molasses to a temperature of 110 μK, which is below the Doppler cooling limit. The temperatures and densities achieved here make CaOH a viable candidate for a wide variety of quantum science applications, including quantum simulation and computation using optical tweezer arrays15,17,22,23. This work also suggests that laser cooling and magneto-optical trapping of many other polyatomic species24-27 will be both feasible and practical.
Collapse
Affiliation(s)
- Nathaniel B Vilas
- Department of Physics, Harvard University, Cambridge, MA, USA. .,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.
| | - Christian Hallas
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Loïc Anderegg
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Paige Robichaud
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Andrew Winnicki
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Debayan Mitra
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.,Department of Physics, Columbia University, New York, NY, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| |
Collapse
|
18
|
Lu Y, Holland CM, Cheuk LW. Molecular Laser Cooling in a Dynamically Tunable Repulsive Optical Trap. PHYSICAL REVIEW LETTERS 2022; 128:213201. [PMID: 35687464 DOI: 10.1103/physrevlett.128.213201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Recent work with laser-cooled molecules in attractive optical traps has shown that the differential ac Stark shifts arising from the trap light itself can become problematic, limiting collisional shielding efficiencies, rotational coherence times, and laser-cooling temperatures. In this Letter, we explore trapping and laser cooling of CaF molecules in a ring-shaped repulsive optical trap. The observed dependences of loss rates on temperature and barrier height show characteristic behavior of repulsive traps and indicate strongly suppressed average ac Stark shifts. Within the trap, we find that Λ-enhanced gray molasses cooling is effective, producing similar minimum temperatures as those obtained in free space. By combining in-trap laser cooling with dynamical reshaping of the trap, we also present a method that allows highly efficient and rapid transfer from molecular magneto-optical traps into conventional attractive optical traps, which has been an outstanding challenge for experiments to date. Notably, our method could allow nearly lossless transfer over millisecond timescales.
Collapse
Affiliation(s)
- Yukai Lu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Connor M Holland
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Lawrence W Cheuk
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|