1
|
Jayatissa H, Avila ML, Rehm KE, Mohr P, Meisel Z, Chen J, Hoffman CR, Liang J, Müller-Gatermann C, Neto D, Ong WJ, Psaltis A, Santiago-Gonzalez D, Tang TL, Ugalde C, Wilson G. Study of the ^{22}Mg Waiting Point Relevant for X-Ray Burst Nucleosynthesis via the ^{22}Mg(α,p)^{25}Al Reaction. PHYSICAL REVIEW LETTERS 2023; 131:112701. [PMID: 37774292 DOI: 10.1103/physrevlett.131.112701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/21/2023] [Accepted: 08/08/2023] [Indexed: 10/01/2023]
Abstract
The ^{22}Mg(α,p)^{25}Al reaction rate has been identified as a major source of uncertainty for understanding the nucleosynthesis flow in Type-I x-ray bursts. We report a direct measurement of the energy- and angle-integrated cross sections of this reaction in a 3.3-6.9 MeV center-of-mass energy range using the MUlti-Sampling Ionization Chamber (MUSIC). The new ^{22}Mg(α,p)^{25}Al reaction rate is a factor of ∼4 higher than the previous direct measurement of this reaction within temperatures relevant for x-ray bursts, resulting in the ^{22}Mg waiting point of x-ray burst nucleosynthesis flow to be significantly bypassed via the (α,p) reaction.
Collapse
Affiliation(s)
- H Jayatissa
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - M L Avila
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - K E Rehm
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - P Mohr
- Institute for Nuclear Research (Atomki), P.O. Box 51, Debrecen H-4001, Hungary
| | - Z Meisel
- Institute of Nuclear and Particle Physics, Ohio University, Athens, Ohio 45701, USA
| | - J Chen
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - C R Hoffman
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - J Liang
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - C Müller-Gatermann
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - D Neto
- Department of Physics, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois 60607, USA
| | - W J Ong
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - A Psaltis
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt D-64289, Germany
| | | | - T L Tang
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - C Ugalde
- Department of Physics, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois 60607, USA
| | - G Wilson
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
2
|
Yamaguchi H, Hayakawa S, Ma N, Shimizu H, Okawa K, Zhang Q, Yang L, Kahl D, La Cognata M, Lamia L, Abe K, Beliuskina O, Cha S, Chae K, Cherubini S, Figuera P, Ge Z, Gulino M, Hu J, Inoue A, Iwasa N, Kim A, Kim D, Kiss G, Kubono S, La Commara M, Lattuada M, Lee E, Moon J, Palmerini S, Parascandolo C, Park S, Phong V, Pierroutsakou D, Pizzone R, Rapisarda G, Romano S, Spitaleri C, Tang X, Trippella O, Tumino A, Zhang N, Lam Y, Heger A, Jacobs A, Xu S, Ma S, Ru L, Liu E, Liu T, Hamill C, Murphy ASJ, Su J, Fang X, Kwag M, Duy N, Uyen N, Kim D, Liang J, Psaltis A, Sferrazza M, Johnston Z, Li Y. RIB induced reactions: Studying astrophysical reactions with low-energy RI beam at CRIB. EPJ WEB OF CONFERENCES 2023. [DOI: 10.1051/epjconf/202327501015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Astrophysical reactions involving radioactive isotopes (RI) often play an important role in high-temperature stellar environments. The experimental studies on the reaction rates for those are still limited mainly due to the technical difficulties in producing high-quality RI beams. A direct measurement of those reactions would be still challenging in many cases, however, we can make a reliable evaluation of the reaction rates by an indirect method or by studying the resonance prorerties. Here we ntroduce recent examples of experimental studies on such RI-involving astrophysical reactions, performed at Center for Nuclear Study, the University of Tokyo, using the low-energy RI beam separator CRIB. One is for the neutron-induced destruction reactions of 7Be in the Big-Bang nucleosynthesis, and the other is the study on the 22Mg(α, p) reaction relevant in X-ray bursts, which was performed with the resonant scattering method from the inverse reaction channel.
Collapse
|
3
|
Lam YH, Heger A, Johnston Z, Goodwin AJ. Sensitivity Study of Nuclear Reactions Influencing Photospheric Radius Expansion X-Ray Bursts. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226011028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Up to now, more than 62 of the 115 X-ray sources of low-mass-X-ray binaries have been identified as photospheric radius expansion (PRE) bursters [1]. Galloway and collaborators expect more PRE bursters in their near future analysis [2]. Although more than half of the discovered X-ray sources are PRE bursters, the bursting mechanism of PRE burster is still not adequately understood. This is because of the complicated hydrodynamics and variable accretion rates. An example is the accretion-powered millisecond pulsar SAX J1808.4–3658 [3, 4] that powered up the brightest Type-I X-ray burst (XRB) recorded by NICER in recent history [5]. The first 1D multi-zone model of SAX J1808.4–3658 was recently constructed [6, 7]. The pioneering model offers a first concurrent and direct comparison with the observed light curves, fluences, and recurrence times. With the three observables, a comparison between theory and observations could be more sensitive than the previous studies of the clocked burster and post-processing models. We perform a sensitivity study on (α,p), (α,γ), (p, α), and (p,γ) reactions with a total up to ~1,500 reactions. Our current result indicates that the observables are more sensitive to the competition between the reactions involving alpha-capture, e.g., the 22Mg(α, p) and 22Mg(p,γ) reactions competing at the 22Mg branch point [8].
Collapse
|
4
|
Hu J, Yamaguchi H, Lam Y, Heger A, Kahl D, Jacobs A, Johnston Z, Xu S, Zhang N, Ma S, Ru L, Liu E, Liu T, Hayakawa S, Yang L, Shimizu H, Hamill C, Murphy AS, Su J, Fang X, Chae K, Kwag M, Cha S, Duy N, Uyen N, Kim D, Pizzone R, La Cognata M, Cherubini S, Romano S, Tumino A, Liang J, Psaltis A, Sferrazza M, Kim D, Li Y, Kubono S. First measurement of 25Al+p resonant scattering relevant to the astrophysical reaction 22Mg( α,p) 25Al. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226005001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Type I X-ray bursts (XRBs) are the most frequently observed thermonuclear explosions in nature. The 22Mg(α,p)25Al reaction plays a critical role in XRB models. However, experimental information is insufficient to deduce a precise 22Mg(α,p)25Al reaction rate for the respective XRB temperature range. A new measurement of 25Al+p resonant scattring was performed up to the astrophysically interested energy region of 22Mg(α,p)25Al. Several resonances were observed in the excitation functions, and their level properties have been determined based on an R-matrix analysis. In particular, proton widths and spin-parities of four natural-parity resonances above the α threshold of 26Si, which can contribute the reaction rate of 22Mg(α,p)25Al, were first experimentally determined.
Collapse
|
5
|
Yamaguchi H, Hayakawa S, Ma N, Shimizu H, Okawa K, Yang L, Kahl D, La Cognata M, Lamia L, Abe K, Beliuskina O, Cha S, Chae K, Cherubini S, Figuera P, Ge Z, Gulino M, Hu J, Inoue A, Iwasa N, Kim A, Kim D, Kiss G, Kubono S, La Commara M, Lattuada M, Lee E, Moon J, Palmerini S, Parascandolo C, Park S, Phong VH, Pierroutsakou D, Pizzone R, Rapisarda G, Romano S, Spitaleri C, Tang X, Trippella O, Tumino A, Zhang N, Lam Y, Heger A, Jacobs A, Xu S, Ma S, Ru L, Liu E, Liu T, Hamill C, St J. Murphy A, Su J, Fang X, Kwag M, Duy N, Uyen N, Kim D, Liang J, Psaltis A, Sferrazza M, Johnston Z, Li Y. Experimental studies on astrophysical reactions at the low-energy RI beam separator CRIB. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226003003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental studies on astrophysical reactions involving radioactive isotopes (RI) often accompany technical challenges. Studies on such nuclear reactions have been conducted at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study, the University of Tokyo. We discuss two cases of astrophysical reaction studies at CRIB; one is for the 7Be+n reactions which may affect the primordial 7Li abundance in the Big-Bang nucleosynthesis, and the other is for the 22Mg(α, p) reaction relevantin X-raybursts.
Collapse
|