1
|
Zhu TX, Su MX, Liu C, Liu YP, Wang CF, Liu PX, Han YJ, Zhou ZQ, Li CF, Guo GC. Integrated spin-wave quantum memory. Natl Sci Rev 2024; 11:nwae161. [PMID: 39440262 PMCID: PMC11493096 DOI: 10.1093/nsr/nwae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 10/25/2024] Open
Abstract
Photonic integrated quantum memories are essential for the construction of scalable quantum networks. Spin-wave quantum storage, which can support on-demand retrieval with a long lifetime, is indispensable for practical applications, but has never been demonstrated in an integrated solid-state device. Here, we demonstrate spin-wave quantum storage based on a laser-written waveguide fabricated in a 151Eu3+:Y2SiO5 crystal, using both the atomic frequency comb and noiseless photon-echo protocols. Qubits encoded with single-photon-level inputs are stored and retrieved with a fidelity of [Formula: see text], which is far beyond the maximal fidelity that can be obtained with any classical device. Our results underline the potential of laser-written integrated devices for practical applications in large-scale quantum networks, such as the construction of multiplexed quantum repeaters in an integrated configuration and high-density transportable quantum memories.
Collapse
Affiliation(s)
- Tian-Xiang Zhu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Xu Su
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chao Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Ping Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chao-Fan Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Pei-Xi Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Jian Han
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Zong-Quan Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
2
|
Liu X, Hu XM, Zhu TX, Zhang C, Xiao YX, Miao JL, Ou ZW, Li PY, Liu BH, Zhou ZQ, Li CF, Guo GC. Nonlocal photonic quantum gates over 7.0 km. Nat Commun 2024; 15:8529. [PMID: 39358375 PMCID: PMC11447119 DOI: 10.1038/s41467-024-52912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Quantum networks provide a prospective paradigm to connect separated quantum nodes, which relies on the distribution of long-distance entanglement and active feedforward control of qubits between remote nodes. Such approaches can be utilized to construct nonlocal quantum gates, forming building blocks for distributed quantum computing and other novel quantum applications. However, these gates have only been realized within single nodes or between nodes separated by a few tens of meters, limiting the ability to harness computing resources in large-scale quantum networks. Here, we demonstrate nonlocal photonic quantum gates between two nodes spatially separated by 7.0 km using stationary qubits based on multiplexed quantum memories, flying qubits at telecom wavelengths, and active feedforward control based on field-deployed fibers. Furthermore, we illustrate quantum parallelism by implementing the Deutsch-Jozsa algorithm and the quantum phase estimation algorithm between the two remote nodes. These results represent a proof-of-principle demonstration of quantum gates over metropolitan-scale distances and lay the foundation for the construction of large-scale distributed quantum networks relying on existing fiber channels.
Collapse
Grants
- This work is supported by the National Key R&D Program of China (No. 2017YFA0304100), Innovation Program for Quantum Science and Technology (No. 2021ZD0301200), the National Natural Science Foundation of China (Nos. 12374338, 12222411, 11904357, 12174367, 12204458, 11821404, 12204459 and 62322513), Anhui Provincial Natural Science Foundation (No. 2108085QA26), Fundamental Research Funds for the Central Universities, USTC Tang Scholarship, Xiaomi Young Talents Program, Science and Technological Fund of Anhui Province for Outstanding Youth (2008085J02). Z.-Q.Z acknowledges the support from the Youth Innovation Promotion Association CAS. The allocation of node B and the deployment of ultralow-loss fiber is supported by China Unicom (Anhui).
Collapse
Affiliation(s)
- Xiao Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao-Min Hu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Tian-Xiang Zhu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Xin Xiao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Le Miao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Wen Ou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Pei-Yun Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Bi-Heng Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| | - Zong-Quan Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
3
|
Durán Gómez JSS, Ramírez Alarcón R, Gómez Robles M, Tavares Ramírez PMC, Rodríguez Becerra GJ, Ortíz-Ricardo E, Salas-Montiel R. Integrated photon pair source based on a silicon nitride micro-ring resonator for quantum memories. OPTICS LETTERS 2024; 49:1860-1863. [PMID: 38560883 DOI: 10.1364/ol.519784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
We report the design of an integrated photon pair source based on spontaneous four-wave mixing (SFWM), implemented in an integrated micro-ring resonator in the silicon nitride platform (Si3N4). The signal photon is generated with emission at 606 nm and bandwidth of 3.98 MHz, matching the spectral properties of praseodymium ions (Pr), while the idler photon is generated at 1430.5 nm matching the wavelength of a CWDM channel in the E-band. This novel, to the best of our knowledge, device is designed to interact with a quantum memory based on a Y2SiO5 crystal doped with Pr3+ ions, in which we used cavity-enhanced SFWM along with dispersion engineering to reach the required wavelength and the few megahertz signal photon spectral bandwidth.
Collapse
|
4
|
Masuko T, Yoshida D, Aida A, Hong FL, Horikiri T. Frequency-multiplexed on-demand storage in five modes of atomic frequency comb through simultaneous application of control pulses. APPLIED OPTICS 2024; 63:1875-1880. [PMID: 38437292 DOI: 10.1364/ao.514004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
Abstract
In quantum communication with quantum repeaters, multiplexed quantum memory is expected to enhance communication rates. When using an atomic frequency comb (AFC) for on-demand storage, the frequency mode number is often limited by the optical power of the control pulses. Here, using a space-coupled waveguide electro-optic modulator, we increased the output power, allowing us to apply control pulses to multiple modes simultaneously. Further, through enhancement of an experimental setup that increases power density, we increased the number of modes. Consequently, we pioneered, to the best of our knowledge, on-demand storage using five modes of AFC. This technology is a significant achievement toward frequency-multiplexed on-demand quantum memory.
Collapse
|
5
|
Cilibrizzi P, Arshad MJ, Tissot B, Son NT, Ivanov IG, Astner T, Koller P, Ghezellou M, Ul-Hassan J, White D, Bekker C, Burkard G, Trupke M, Bonato C. Ultra-narrow inhomogeneous spectral distribution of telecom-wavelength vanadium centres in isotopically-enriched silicon carbide. Nat Commun 2023; 14:8448. [PMID: 38114478 PMCID: PMC10730896 DOI: 10.1038/s41467-023-43923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Spin-active quantum emitters have emerged as a leading platform for quantum technologies. However, one of their major limitations is the large spread in optical emission frequencies, which typically extends over tens of GHz. Here, we investigate single V4+ vanadium centres in 4H-SiC, which feature telecom-wavelength emission and a coherent S = 1/2 spin state. We perform spectroscopy on single emitters and report the observation of spin-dependent optical transitions, a key requirement for spin-photon interfaces. By engineering the isotopic composition of the SiC matrix, we reduce the inhomogeneous spectral distribution of different emitters down to 100 MHz, significantly smaller than any other single quantum emitter. Additionally, we tailor the dopant concentration to stabilise the telecom-wavelength V4+ charge state, thereby extending its lifetime by at least two orders of magnitude. These results bolster the prospects for single V emitters in SiC as material nodes in scalable telecom quantum networks.
Collapse
Affiliation(s)
- Pasquale Cilibrizzi
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Muhammad Junaid Arshad
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Benedikt Tissot
- Department of Physics, University of Konstanz, D-78457, Konstanz, Germany
| | - Nguyen Tien Son
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Ivan G Ivanov
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Thomas Astner
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, A-1090, Vienna, Austria
| | - Philipp Koller
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, A-1090, Vienna, Austria
| | - Misagh Ghezellou
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Jawad Ul-Hassan
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Daniel White
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Christiaan Bekker
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Guido Burkard
- Department of Physics, University of Konstanz, D-78457, Konstanz, Germany
| | - Michael Trupke
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, A-1090, Vienna, Austria.
| | - Cristian Bonato
- School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| |
Collapse
|
6
|
Lago-Rivera D, Rakonjac JV, Grandi S, Riedmatten HD. Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit. Nat Commun 2023; 14:1889. [PMID: 37019899 PMCID: PMC10076279 DOI: 10.1038/s41467-023-37518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Quantum teleportation is an essential capability for quantum networks, allowing the transmission of quantum bits (qubits) without a direct exchange of quantum information. Its implementation between distant parties requires teleportation of the quantum information to matter qubits that store it for long enough to allow users to perform further processing. Here we demonstrate long distance quantum teleportation from a photonic qubit at telecom wavelength to a matter qubit, stored as a collective excitation in a solid-state quantum memory. Our system encompasses an active feed-forward scheme, implementing a conditional phase shift on the qubit retrieved from the memory, as required by the protocol. Moreover, our approach is time-multiplexed, allowing for an increase in the teleportation rate, and is directly compatible with the deployed telecommunication networks, two key features for its scalability and practical implementation, that will play a pivotal role in the development of long-distance quantum communication.
Collapse
Affiliation(s)
- Dario Lago-Rivera
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain.
| | - Jelena V Rakonjac
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Samuele Grandi
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Hugues de Riedmatten
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain.
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015, Barcelona, Spain.
| |
Collapse
|
7
|
Liu DC, Li PY, Zhu TX, Zheng L, Huang JY, Zhou ZQ, Li CF, Guo GC. On-Demand Storage of Photonic Qubits at Telecom Wavelengths. PHYSICAL REVIEW LETTERS 2022; 129:210501. [PMID: 36461974 DOI: 10.1103/physrevlett.129.210501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Quantum memories at telecom wavelengths are crucial for the construction of large-scale quantum networks based on existing fiber networks. On-demand storage of telecom photonic qubits is an essential request for such networking applications but yet to be demonstrated. Here we demonstrate the storage and on-demand retrieval of telecom photonic qubits using a laser-written waveguide fabricated in an ^{167}Er^{3+}:Y_{2}SiO_{5} crystal. Both ends of the waveguide memory are directly connected with fiber arrays with a fiber-to-fiber efficiency of 51%. Storage fidelity of 98.3(1)% can be obtained for time-bin qubits encoded with single-photon-level coherent pulses, which is far beyond the maximal fidelity that can be achieved with a classical measure and prepared strategy. This device features high reliability and easy scalability, and it can be directly integrated into fiber networks, which could play an essential role in fiber-based quantum networks.
Collapse
Affiliation(s)
- Duan-Cheng Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Pei-Yun Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Tian-Xiang Zhu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Liang Zheng
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jian-Yin Huang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Zong-Quan Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
8
|
Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb 3+:Y 2SiO 5. Nat Commun 2022; 13:6438. [PMID: 36307421 PMCID: PMC9616888 DOI: 10.1038/s41467-022-33929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022] Open
Abstract
Quantum repeaters based on heralded entanglement require quantum nodes that are able to generate multimode quantum correlations between memories and telecommunication photons. The communication rate scales linearly with the number of modes, yet highly multimode quantum storage remains challenging. In this work, we demonstrate an atomic frequency comb quantum memory with a time-domain mode capacity of 1250 modes and a bandwidth of 100 MHz. The memory is based on a Y2SiO5 crystal doped with 171Yb3+ ions, with a memory wavelength of 979 nm. The memory is interfaced with a source of non-degenerate photon pairs at 979 and 1550 nm, bandwidth-matched to the quantum memory. We obtain strong non-classical second-order cross correlations over all modes, for storage times of up to 25 μs. The telecommunication photons propagated through 5 km of fiber before the release of the memory photons, a key capability for quantum repeaters based on heralded entanglement and feed-forward operations. Building on this experiment should allow distribution of entanglement between remote quantum nodes, with enhanced rates owing to the high multimode capacity. Multimode operation would greatly improve the performances of quantum repeaters. Here, the authors demonstrate a fixed-delay atomic frequency comb quantum memory, based on a Y2SiO5 crystal doped with Ytterbium ions, with a time-domain mode capacity of 1250 modes and a bandwidth of 100 MHz.
Collapse
|
9
|
Rakonjac JV, Corrielli G, Lago-Rivera D, Seri A, Mazzera M, Grandi S, Osellame R, de Riedmatten H. Storage and analysis of light-matter entanglement in a fiber-integrated system. SCIENCE ADVANCES 2022; 8:eabn3919. [PMID: 35857480 PMCID: PMC9714774 DOI: 10.1126/sciadv.abn3919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The deployment of a full-fledged quantum internet poses the challenge of finding adequate building blocks for entanglement distribution between remote quantum nodes. A practical system would combine propagation in optical fibers with quantum memories for light, leveraging on the existing communication network while featuring the scalability required to extend to network sizes. Here, we demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength. The storage device is based on a fiber-pigtailed laser-written waveguide in a rare earth-doped solid and allows an all-fiber stable addressing of the memory. The analysis of the entanglement is performed using fiber-based interferometers. Our results feature orders-of-magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement and constitute a substantial step forward toward quantum networks using integrated devices.
Collapse
Affiliation(s)
- Jelena V. Rakonjac
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels (Barcelona) 08860, Spain
| | - Giacomo Corrielli
- Istituto di Fotonica e Nanotecnologie (IFN) - CNR P.zza
Leonardo da Vinci 32, Milano 20133, Italy
| | - Dario Lago-Rivera
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels (Barcelona) 08860, Spain
| | - Alessandro Seri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels (Barcelona) 08860, Spain
| | - Margherita Mazzera
- Institute of Photonics and Quantum Sciences, SUPA,
Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Samuele Grandi
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels (Barcelona) 08860, Spain
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnologie (IFN) - CNR P.zza
Leonardo da Vinci 32, Milano 20133, Italy
| | - Hugues de Riedmatten
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, Castelldefels (Barcelona) 08860, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats,
Barcelona 08015, Spain
| |
Collapse
|