1
|
Han Z, Kivelson SA, Volkov PA. Quantum Bipolaron Superconductivity from Quadratic Electron-Phonon Coupling. PHYSICAL REVIEW LETTERS 2024; 132:226001. [PMID: 38877937 DOI: 10.1103/physrevlett.132.226001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 10/20/2024]
Abstract
When the electron-phonon coupling is quadratic in the phonon coordinates, electrons can pair to form bipolarons due to phonon zero-point fluctuations, a purely quantum effect. We study superconductivity originating from this pairing mechanism in a minimal model and reveal that, in the strong coupling regime, the critical temperature (T_{c}) is only mildly suppressed by the coupling strength, in stark contrast to the exponential suppression in linearly coupled systems, thus implying higher optimal T_{c} values. We demonstrate that large coupling constants of this flavor are achieved in known materials such as perovskites, and discuss strategies to realize such superconductivity using superlattices.
Collapse
Affiliation(s)
- Zhaoyu Han
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Steven A Kivelson
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Pavel A Volkov
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
2
|
Yu XJ, Pan Z, Xu L, Li ZX. Non-Hermitian Strongly Interacting Dirac Fermions. PHYSICAL REVIEW LETTERS 2024; 132:116503. [PMID: 38563924 DOI: 10.1103/physrevlett.132.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Exotic quantum phases and phase transition in the strongly interacting Dirac systems have attracted tremendous interests. On the other hand, non-Hermitian physics, usually associated with dissipation arising from the coupling to environment, emerges as a frontier of modern physics in recent years. In this Letter, we investigate the interplay between non-Hermitian physics and strong correlation in Dirac-fermion systems. We generalize the projector quantum Monte-Carlo (PQMC) algorithm to the non-Hermitian interacting fermionic systems. Employing PQMC simulation, we decipher the ground-state phase diagram of the honeycomb Hubbard model with spin resolved non-Hermitian asymmetric hopping processes. The antiferromagnetic (AFM) ordering induced by Hubbard interaction is enhanced by the non-Hermitian asymmetric hopping. Combining PQMC simulation and renormalization group analysis, we reveal that the quantum phase transition between Dirac semi-metal and AFM phases belongs to Hermitian chiral XY universality class, implying that a Hermitian Gross-Neveu transition is emergent at the quantum critical point although the model is non-Hermitian.
Collapse
Affiliation(s)
- Xue-Jia Yu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhiming Pan
- Department of Physics, School of Science, Westlake University, Hangzhou 310030, China
- Institute for Theoretical Sciences, Westlake University, Hangzhou 310024, China
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Zi-Xiang Li
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yu XJ, Shi SH, Xu L, Li ZX. Emergence of Competing Orders and Possible Quantum Spin Liquid in SU(N) Fermions. PHYSICAL REVIEW LETTERS 2024; 132:036704. [PMID: 38307084 DOI: 10.1103/physrevlett.132.036704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 02/04/2024]
Abstract
In the past few decades, tremendous efforts have been made toward understanding the exotic physics emerging from competition between various ordering tendencies in strongly correlated systems. Employing state-of-the-art quantum Monte Carlo simulation, we investigate an interacting SU(N) fermionic model with varying interaction strength and value of N, and we unveil the ground-state phase diagram of the model exhibiting a plethora of exotic phases. For small values of N-namely, N=2, 3-the ground state is an antiferromagnetic (AFM) phase, whereas in the large-N limit, a staggered valence bond solid (VBS) order is dominant. For intermediate values of N such as N=4, 5, remarkably, our study reveals that distinct VBS orders appear in the weak and strong coupling regimes. More fantastically, the competition between staggered and columnar VBS ordering tendencies gives rise to a Mott insulating phase without spontaneous symmetry breaking (SSB), existing in a large interacting parameter regime, which is consistent with a gapped quantum spin liquid. Our study not only provides a platform to investigate the fundamental physics of quantum many-body systems-it also offers a novel route toward searching for exotic states of matter such as quantum spin liquid in realistic quantum materials.
Collapse
Affiliation(s)
- Xue-Jia Yu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shao-Hang Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Zi-Xiang Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Han Z, Kivelson SA. Resonating Valence Bond States in an Electron-Phonon System. PHYSICAL REVIEW LETTERS 2023; 130:186404. [PMID: 37204902 DOI: 10.1103/physrevlett.130.186404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
We study a simple electron-phonon model on square and triangular versions of the Lieb lattice using an asymptotically exact strong coupling analysis. At zero temperature and electron density n=1 (one electron per unit cell), for various ranges of parameters in the model, we exploit a mapping to the quantum dimer model to establish the existence of a spin-liquid phase with Z_{2} topological order (on the triangular lattice) and a multicritical line corresponding to a quantum critical spin liquid (on the square lattice). In the remaining part of the phase diagram, we find a host of charge-density-wave phases (valence-bond solids), a conventional s-wave superconducting phase, and with the addition of a small Hubbard U to tip the balance, a phonon-induced d-wave superconducting phase. Under a special condition, we find a hidden pseudospin SU(2) symmetry that implies an exact constraint on the superconducting order parameters.
Collapse
Affiliation(s)
- Zhaoyu Han
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Steven A Kivelson
- Department of Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
5
|
Cohen-Stead B, Bradley O, Miles C, Batrouni G, Scalettar R, Barros K. Fast and scalable quantum Monte Carlo simulations of electron-phonon models. Phys Rev E 2022; 105:065302. [PMID: 35854479 DOI: 10.1103/physreve.105.065302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
We introduce methodologies for highly scalable quantum Monte Carlo simulations of electron-phonon models, and we report benchmark results for the Holstein model on the square lattice. The determinant quantum Monte Carlo (DQMC) method is a widely used tool for simulating simple electron-phonon models at finite temperatures, but it incurs a computational cost that scales cubically with system size. Alternatively, near-linear scaling with system size can be achieved with the hybrid Monte Carlo (HMC) method and an integral representation of the Fermion determinant. Here, we introduce a collection of methodologies that make such simulations even faster. To combat "stiffness" arising from the bosonic action, we review how Fourier acceleration can be combined with time-step splitting. To overcome phonon sampling barriers associated with strongly bound bipolaron formation, we design global Monte Carlo updates that approximately respect particle-hole symmetry. To accelerate the iterative linear solver, we introduce a preconditioner that becomes exact in the adiabatic limit of infinite atomic mass. Finally, we demonstrate how stochastic measurements can be accelerated using fast Fourier transforms. These methods are all complementary and, combined, may produce multiple orders of magnitude speedup, depending on model details.
Collapse
Affiliation(s)
| | - Owen Bradley
- Department of Physics, University of California, Davis, California 95616, USA
| | - Cole Miles
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - George Batrouni
- Université Côte d'Azur, CNRS, Institut de Physique de Nice, (INPHYNI), 06103 Nice, France
- Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117542 Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore
| | - Richard Scalettar
- Department of Physics, University of California, Davis, California 95616, USA
| | - Kipton Barros
- Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
6
|
Weber M, Freericks JK. Real-time evolution of static electron-phonon models in time-dependent electric fields. Phys Rev E 2022; 105:025301. [PMID: 35291073 DOI: 10.1103/physreve.105.025301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
We present an exact Monte Carlo method to simulate the nonequilibrium dynamics of electron-phonon models in the adiabatic limit of zero phonon frequency. The classical nature of the phonons allows us to sample the equilibrium phonon distribution and efficiently evolve the electronic subsystem in a time-dependent electromagnetic field for each phonon configuration. We demonstrate that our approach is particularly useful for charge-density-wave systems experiencing pulsed electric fields, as they appear in pump-probe experiments. For the half-filled Holstein model in one and two dimensions, we calculate the out-of-equilibrium response of the current and the energy after a pulse is applied as well as the photoemission spectrum before and after the pump. Finite-size effects are under control for chains of 162 sites (in one dimension) or 16×16 square lattices (in two dimensions).
Collapse
Affiliation(s)
- Manuel Weber
- Department of Physics, Georgetown University, Washington, DC 20057, USA
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - James K Freericks
- Department of Physics, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|