1
|
Shan ZL, Sun YK, Tao R, Chen QD, Tian ZN, Zhang XL. Non-Abelian Holonomy in Degenerate Non-Hermitian Systems. PHYSICAL REVIEW LETTERS 2024; 133:053802. [PMID: 39159106 DOI: 10.1103/physrevlett.133.053802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/01/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024]
Abstract
Non-Abelian holonomy, a noncommutative process that measures the parallel transport of non-Abelian gauge fields, has so far been realized in degenerate Hermitian systems with degenerate eigenstates or nondegenerate non-Hermitian systems with exceptional points. Here, we introduce non-Abelian holonomy into degenerate non-Hermitian systems possessing degenerate exceptional points and degenerate energy topologies. The interplay between energy degeneracy and energy topology around exceptional points leads to a non-Abelian holonomy with multiple energy levels and multiple degenerate levels simultaneously, going beyond that in degenerate Hermitian systems with a single energy level, or in nondegenerate non-Hermitian systems with a single degenerate level. We exploit an on-chip photonic platform to experimentally demonstrate the holonomy induced non-Abelian phenomenon, including the switching of eigenstates associated with different degenerate exceptional points and sequence-dependent holonomic outcomes. Our work shifts the paradigm of non-Abelian holonomy and adds new degrees of freedom for non-Abelian applications.
Collapse
Affiliation(s)
- Zhong-Lei Shan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yi-Ke Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Ran Tao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Qi-Dai Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhen-Nan Tian
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xu-Lin Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Wang L, Liu N, Wu C, Chen G. Dynamical encircling of multiple exceptional points in anti-PT symmetry system. OPTICS EXPRESS 2024; 32:21616-21628. [PMID: 38859511 DOI: 10.1364/oe.524678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Exceptional points (EPs) in non-Hermitian systems have turned out to be at the origin of many intriguing effects with no counterparts in Hermitian cases. A typically interesting behavior is the chiral mode switching by dynamically winding the EP. Most encircling protocols focus on the two-state or parity-time (PT) symmetry systems. Here, we propose and investigate the dynamical encircling of multiple EPs in an anti-PT-symmetric system, which is constructed based on a one-dimensional lattice with staggered lossy modulation. We reveal that dynamically encircling the multiple EPs results in the chiral dynamics via multiple non-Hermiticity-induced nonadiabatic transitions, where the output state is always on the lowest-loss energy sheet. Compared with the PT-symmetric systems that require complicated variation of the gain/loss rate or on-site potentials, our system only requires modulations of the couplings which can be readily realized in various experimental platforms. Our scheme provides a route to study non-Hermitian physics by engineering the EPs and implement novel photonic devices with unconventional functions.
Collapse
|
3
|
Shu X, Zhong Q, Hong K, You O, Wang J, Hu G, Alù A, Zhang S, Christodoulides DN, Chen L. Chiral transmission by an open evolution trajectory in a non-Hermitian system. LIGHT, SCIENCE & APPLICATIONS 2024; 13:65. [PMID: 38438358 PMCID: PMC10912664 DOI: 10.1038/s41377-024-01409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Exceptional points (EPs), at which two or more eigenvalues and eigenstates of a resonant system coalesce, are associated with non-Hermitian Hamiltonians with gain and/or loss elements. Dynamic encircling of EPs has received significant interest in recent years, as it has been shown to lead to highly nontrivial phenomena, such as chiral transmission in which the final state of the system depends on the encircling handedness. Previously, chiral transmission for a pair of eigenmodes has been realized by establishing a closed dynamical trajectory in parity-time- (PT-) or anti-PT-symmetric systems. Although chiral transmission of symmetry-broken modes, more accessible in practical photonic integrated circuits, has been realized by establishing a closed trajectory encircling EPs in anti-PT-symmetric systems, the demonstrated transmission efficiency is very low due to path-dependent losses. Here, we demonstrate chiral dynamics in a coupled waveguide system that does not require a closed trajectory. Specifically, we explore an open trajectory linking two infinite points having the same asymptotic eigenmodes (not modes in PT- and anti-PT-symmetric systems), demonstrating that this platform enables high-efficiency chiral transmission, with each eigenmode localized in a single waveguide. This concept is experimentally implemented in a coupled silicon waveguide system at telecommunication wavelengths. Our work provides a new evolution strategy for chiral dynamics with superior performance, laying the foundation for the development of practical chiral-transmission devices.
Collapse
Affiliation(s)
- Xiaoqian Shu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Zhejiang Lab, Hangzhou, 311121, China
| | - Qi Zhong
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32816, USA
| | - Kai Hong
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Oubo You
- Department of Physics, The University of Hong Kong, Hong Kong, China
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Shuang Zhang
- Department of Physics, The University of Hong Kong, Hong Kong, China
| | | | - Lin Chen
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
4
|
Wang X, Gu R, Li Y, Qi H, Hu X, Wang X, Gong Q. A scheme for realizing nonreciprocal interlayer coupling in bilayer topological systems. FRONTIERS OF OPTOELECTRONICS 2023; 16:38. [PMID: 38010425 PMCID: PMC10682335 DOI: 10.1007/s12200-023-00094-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Nonreciprocal interlayer coupling is difficult to practically implement in bilayer non-Hermitian topological photonic systems. In this work, we identify a similarity transformation between the Hamiltonians of systems with nonreciprocal interlayer coupling and on-site gain/loss. The similarity transformation is widely applicable, and we show its application in one- and two-dimensional bilayer topological systems as examples. The bilayer non-Hermitian system with nonreciprocal interlayer coupling, whose topological number can be defined using the gauge-smoothed Wilson loop, is topologically equivalent to the bilayer system with on-site gain/loss. We also show that the topological number of bilayer non-Hermitian C6v-typed domain-induced topological interface states can be defined in the same way as in the case of the bilayer non-Hermitian Su-Schrieffer-Heeger model. Our results show the relations between two microscopic provenances of the non-Hermiticity and provide a universal and convenient scheme for constructing and studying nonreciprocal interlayer coupling in bilayer non-Hermitian topological systems. This scheme is useful for observation of non-Hermitian skin effect in three-dimensional systems.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Ruizhe Gu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Yandong Li
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Huixin Qi
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Xingyuan Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
5
|
Li A, Wei H, Cotrufo M, Chen W, Mann S, Ni X, Xu B, Chen J, Wang J, Fan S, Qiu CW, Alù A, Chen L. Exceptional points and non-Hermitian photonics at the nanoscale. NATURE NANOTECHNOLOGY 2023; 18:706-720. [PMID: 37386141 DOI: 10.1038/s41565-023-01408-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 07/01/2023]
Abstract
Exceptional points (EPs) arising in non-Hermitian systems have led to a variety of intriguing wave phenomena, and have been attracting increased interest in various physical platforms. In this Review, we highlight the latest fundamental advances in the context of EPs in various nanoscale systems, and overview the theoretical progress related to EPs, including higher-order EPs, bulk Fermi arcs and Weyl exceptional rings. We peek into EP-associated emerging technologies, in particular focusing on the influence of noise for sensing near EPs, improving the efficiency in asymmetric transmission based on EPs, optical isolators in nonlinear EP systems and novel concepts to implement EPs in topological photonics. We also discuss the constraints and limitations of the applications relying on EPs, and offer parting thoughts about promising ways to tackle them for advanced nanophotonic applications.
Collapse
Affiliation(s)
- Aodong Li
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Wei
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Michele Cotrufo
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Weijin Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Sander Mann
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Xiang Ni
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Bingcong Xu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Shanhui Fan
- Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA.
- Physics Program, Graduate Center, City University of New York, New York, NY, USA.
| | - Lin Chen
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China.
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
| |
Collapse
|
6
|
Wang LC, Chen Y, Tian ZN, Wang YD, Ren XF, Chen QD. Observation of delocalization transition in topological waveguide arrays with long-range interactions. OPTICS LETTERS 2023; 48:3283-3286. [PMID: 37319082 DOI: 10.1364/ol.493113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Topological edge states are a generic feature of topological insulators, and the long-range interactions, which break certain properties of topological edge states, are always non-negligible in real physical systems. In this Letter, we investigate the influence of next-nearest-neighbor (NNN) interactions on the topological properties of the Su-Schrieffer-Heeger (SSH) model by extracting the survival probabilities at the boundary of the photonic lattices. By introducing a series of integrated photonic waveguide arrays with different strengths of long-range interactions, we experimentally observe delocalization transition of light in SSH lattices with nontrivial phase, which is in good agreement with our theoretical predictions. The results indicate that the NNN interactions can significantly affect the edge states, and that the localization of these states can be absent in topologically nontrivial phase. Our work provides an alternative way to investigate the interplay between long-range interactions and localized states, which may stimulate further interest in topological properties in relevant structures.
Collapse
|
7
|
Arkhipov II, Miranowicz A, Minganti F, Özdemir ŞK, Nori F. Dynamically crossing diabolic points while encircling exceptional curves: A programmable symmetric-asymmetric multimode switch. Nat Commun 2023; 14:2076. [PMID: 37045822 PMCID: PMC10097868 DOI: 10.1038/s41467-023-37275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Nontrivial spectral properties of non-Hermitian systems can lead to intriguing effects with no counterparts in Hermitian systems. For instance, in a two-mode photonic system, by dynamically winding around an exceptional point (EP) a controlled asymmetric-symmetric mode switching can be realized. That is, the system can either end up in one of its eigenstates, regardless of the initial eigenmode, or it can switch between the two states on demand, by simply controlling the winding direction. However, for multimode systems with higher-order EPs or multiple low-order EPs, the situation can be more involved, and the ability to control asymmetric-symmetric mode switching can be impeded, due to the breakdown of adiabaticity. Here we demonstrate that this difficulty can be overcome by winding around exceptional curves by additionally crossing diabolic points. We consider a four-mode [Formula: see text]-symmetric bosonic system as a platform for experimental realization of such a multimode switch. Our work provides alternative routes for light manipulations in non-Hermitian photonic setups.
Collapse
Affiliation(s)
- Ievgen I Arkhipov
- Joint Laboratory of Optics of Palacký University and Institute of Physics of CAS, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| | - Adam Miranowicz
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama, 351-0198, Japan
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Fabrizio Minganti
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Şahin K Özdemir
- Department of Engineering Science and Mechanics, and Materials Research Institute (MRI), The Pennsylvania State University, University Park, PA, 16802, USA
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama, 351-0198, Japan.
- Quantum Information Physics Theory Research Team, Quantum Computing Center, RIKEN, Wakoshi, Saitama, 351-0198, Japan.
- Physics Department, The University of Michigan, Ann Arbor, MI, 48109-1040, USA.
| |
Collapse
|
8
|
Wang LC, Chen Y, Gong M, Yu F, Chen QD, Tian ZN, Ren XF, Sun HB. Edge State, Localization Length, and Critical Exponent from Survival Probability in Topological Waveguides. PHYSICAL REVIEW LETTERS 2022; 129:173601. [PMID: 36332264 DOI: 10.1103/physrevlett.129.173601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Edge states in topological phase transitions have been observed in various platforms. To date, verification of the edge states and the associated topological invariant are mostly studied, and yet a quantitative measurement of topological phase transitions is still lacking. Here, we show the direct measurement of edge states and their localization lengths from survival probability. We employ photonic waveguide arrays to demonstrate the topological phase transitions based on the Su-Schrieffer-Heeger model. By measuring the survival probability at the lattice boundary, we show that in the long-time limit, the survival probability is P=(1-e^{-2/ξ_{loc}})^{2}, where ξ_{loc} is the localization length. This length derived from the survival probability is compared with the distance from the transition point, yielding a critical exponent of ν=0.94±0.04 at the phase boundary. Our experiment provides an alternative route to characterizing topological phase transitions and extracting their key physical quantities.
Collapse
Affiliation(s)
- Li-Cheng Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yang Chen
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Ming Gong
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Feng Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Qi-Dai Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhen-Nan Tian
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xi-Feng Ren
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| |
Collapse
|
9
|
Zhu S. Non-Abelian 3D photonic chips fabricated by femtosecond-laser direct-writing. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Li A, Chen W, Wei H, Lu G, Alù A, Qiu CW, Chen L. Riemann-Encircling Exceptional Points for Efficient Asymmetric Polarization-Locked Devices. PHYSICAL REVIEW LETTERS 2022; 129:127401. [PMID: 36179197 DOI: 10.1103/physrevlett.129.127401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Dynamically encircling exceptional points (EPs) have unveiled intriguing chiral dynamics in photonics. However, the traditional approach based on an open manifold of Hamiltonian parameter space fails to explore trajectories that pass through an infinite boundary. Here, by mapping the full parameter space onto a closed manifold of the Riemann sphere, we introduce a framework to describe encircling-EP loops. We demonstrate that an encircling trajectory crossing the north vertex can realize near-unity asymmetric transmission. An efficient gain-free, broadband asymmetric polarization-locked device is realized by mapping the encircling path onto L-shaped silicon waveguides.
Collapse
Affiliation(s)
- Aodong Li
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weijin Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Heng Wei
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, New York 10016, USA
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Lin Chen
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Yang S, Zhang X, Sun H. Exceptional point protected robust on-chip optical logic gates. EXPLORATION (BEIJING, CHINA) 2022; 2:20210243. [PMID: 37323707 PMCID: PMC10191016 DOI: 10.1002/exp.20210243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/25/2022] [Indexed: 06/17/2023]
Abstract
Optical logic gates are crucial components for information processing and communication using photons. Current optical logic gates typically rely on the light interference principle which requires an accurate manipulation of the dynamical phase of light, making the device quite sensitive to system disturbances such as fabrication errors. Here we introduce non-Hermitian principles into the design of optical logic gates that work in the signal transmission process. We propose an exclusive-or gate for silicon-on-insulator platform by employing the physics in the exceptional point (EP) encirclement process. The EP induced mode switching behavior is applied to manipulate the phase of light which is topologically protected by the energy surface around the EP. As a result, the performance of the device is found to be extremely robust to structural parameter disturbances. The proposed non-Hermitian principle is expected to find applications for other on-chip photonic devices toward high robust performance.
Collapse
Affiliation(s)
- Song‐Rui Yang
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin UniversityChangchunChina
- College of PhysicsJilin UniversityChangchunChina
| | - Xu‐Lin Zhang
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin UniversityChangchunChina
| | - Hong‐Bo Sun
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin UniversityChangchunChina
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityHaidianBeijingChina
| |
Collapse
|