1
|
Li X, Sun Z, Fang YY, Huang XL, Huang X, Li JF, Zhang ZY, Liu JM. Quantum Otto Heat Engine Using Polar Molecules in Pendular States. Molecules 2024; 29:5617. [PMID: 39683776 DOI: 10.3390/molecules29235617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Quantum heat engines (QHEs) are established by applying the principles of quantum thermodynamics to small-scale systems, which leverage quantum effects to gain certain advantages. In this study, we investigate the quantum Otto cycle by employing the dipole-dipole coupled polar molecules as the working substance of QHE. Here, the molecules are considered to be trapped within an optical lattice and located in an external electric field. We analyze the work output and the efficiency of the quantum Otto heat engine (QOHE) as a function of various physical parameters, including electric field strength, dipole-dipole interaction and temperatures of heat baths. It is found that by adjusting these physical parameters the performance of the QOHE can be optimized effectively. Moreover, we also examine the influences of the entanglement and relative entropy of coherence for the polar molecules in thermal equilibrium states on the QOHE. Our results demonstrate the potential of polar molecules in achieving QHEs.
Collapse
Affiliation(s)
- Xiang Li
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China
| | - Yu-Yan Fang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xiao-Li Huang
- Department of Physics, Liaoning Normal University, Dalian 116029, China
| | - Xinning Huang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jin-Fang Li
- Department of Physics and Electronic Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Zuo-Yuan Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jin-Ming Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| |
Collapse
|
2
|
Hermsmeier R, Tscherbul TV. Highly Spin-Polarized Molecules via Collisional Microwave Pumping. PHYSICAL REVIEW LETTERS 2024; 133:173001. [PMID: 39530814 DOI: 10.1103/physrevlett.133.173001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
We propose a general technique to produce cold spin-polarized molecules in the electronic states of Σ symmetry, in which rotationally excited levels are first populated by coherent microwave excitation, and then allowed to spin flip and relax via collisional quenching, which populates a single final spin state. The steady-state spin polarization is maximized in the regime, where collisional slip-flipping transitions in the ground rotational manifold (N=0) are suppressed by a factor of ≥10 compared to those in the first rotationally excited manifold (N=1), as generally expected for Σ-state molecules at temperatures below the rotational spacing between the N=0 and N=1 manifolds. We theoretically demonstrate the high selectivity of the technique for ^{13}C^{16}O molecules immersed in a cold buffer gas of helium atoms, achieving a high degree (≥95%) of nuclear spin polarization at 1 K.
Collapse
|
3
|
Zeng Z, Deng S, Yang S, Yan B. Three-Dimensional Magneto-Optical Trapping of Barium Monofluoride. PHYSICAL REVIEW LETTERS 2024; 133:143404. [PMID: 39423416 DOI: 10.1103/physrevlett.133.143404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
As a heavy molecule, barium monofluoride (BaF) presents itself as a promising candidate for measuring permanent electric dipole moment. Here we report the realization of three-dimensional magneto-optical trapping (MOT) of BaF molecules. Through the repumping of all the vibrational states up to v=3, and rotational states up to N=3, we effectively close the transition to a leakage level lower than 10^{-5}. This approach enables molecules to scatter a sufficient number of photons required for laser cooling and trapping. By employing a technique that involves chirping the slowing laser frequency, BaF molecules are decelerated to near-zero velocity, resulting in the capture of approximately 3×10^{3} molecules in a MOT. Our findings represent a significant step towards the realization of ultracold BaF molecules and the conduct of precision measurements with cold molecules.
Collapse
Affiliation(s)
- Zixuan Zeng
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Shuhua Deng
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Shoukang Yang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Bo Yan
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Luke J, Zhu L, Liu YX, Ni KK. Reaction interferometry with ultracold molecules. Faraday Discuss 2024; 251:63-75. [PMID: 38775173 DOI: 10.1039/d3fd00175j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We propose to coherently control the ultracold 2KRb → K2 + Rb2 reaction product state distribution via quantum interference. By leveraging that the nuclear spin degrees of freedom in the reaction maintain coherence, which was demonstrated in Liu, Zhu et al., arXiv, 2023, arXiv:2310.07620, https://doi.org/10.48550/arXiv.2310.07620, we explore the concept of a "reaction interferometer". Such an interferometer involves splitting one KRb molecular cloud into two, imprinting a well-defined relative phase between them, recombining the clouds for reactions, and measuring the product state distribution. We show that the interference patterns provide a mechanism to coherently control the product states, and specific product channels also serve as an entanglement witness of the atoms in the reactant KRb molecule.
Collapse
Affiliation(s)
- Jeshurun Luke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Lingbang Zhu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Yi-Xiang Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
5
|
Zhang ZY, Hu JR, Fang YY, Li JF, Liu JM, Huang X, Sun Z. Quantum gate control of polar molecules with machine learning. J Chem Phys 2024; 161:034102. [PMID: 39007369 DOI: 10.1063/5.0216013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
We propose a scheme for achieving basic quantum gates using ultracold polar molecules in pendular states. The qubits are encoded in the YbF molecules trapped in an electric field with a certain gradient and coupled by the dipole-dipole interaction. The time-dependent control sequences consisting of multiple pulses are considered to interact with the pendular qubits. To achieve high-fidelity quantum gates, we map the control problem for the coupled molecular system into a Markov decision process and deal with it using the techniques of deep reinforcement learning (DRL). By training the agents over multiple episodes, the optimal control pulse sequences for the two-qubit gates of NOT, controlled NOT, and Hadamard are discovered with high fidelities. Moreover, the population dynamics of YbF molecules driven by the discovered gate sequences are analyzed in detail. Furthermore, by combining the optimal gate sequences, we successfully simulate the quantum circuit for entanglement. Our findings could offer new insights into efficiently controlling molecular systems for practical molecule-based quantum computing using DRL.
Collapse
Affiliation(s)
- Zuo-Yuan Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jie-Ru Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yu-Yan Fang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jin-Fang Li
- Department of Physics and Electronic Engineering, Xianyang Normal University, Shaanxi 712000, China
| | - Jin-Ming Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Xinning Huang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
6
|
Li SJ, Holland CM, Lu Y, Cheuk LW. Blue-Detuned Magneto-optical Trap of CaF Molecules. PHYSICAL REVIEW LETTERS 2024; 132:233402. [PMID: 38905654 DOI: 10.1103/physrevlett.132.233402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
A key method to produce trapped and laser-cooled molecules is the magneto-optical trap (MOT), which is conventionally created using light red detuned from an optical transition. In this work, we report a MOT for CaF molecules created using blue-detuned light. The blue-detuned MOT (BDM) achieves temperatures well below the Doppler limit and provides the highest densities and phase-space densities reported to date in CaF MOTs. Our results suggest that BDMs are likely achievable in many relatively light molecules including polyatomic ones, but our measurements suggest that BDMs will be challenging to realize in substantially heavier molecules due to sub-mK trap depths. In addition to record temperatures and densities, we find that the BDM substantially simplifies and enhances the loading of molecules into optical tweezer arrays, which are a promising platform for quantum simulation and quantum information processing. Notably, the BDM reduces molecular number requirements ninefold compared to a conventional red-detuned MOT, while not requiring additional hardware. Our work therefore substantially simplifies preparing large-scale molecular tweezer arrays, which are a novel platform for simulation of quantum many-body dynamics and quantum information processing with molecular qubits.
Collapse
|
7
|
Liu YX, Zhu L, Luke J, Houwman JJA, Babin MC, Hu MG, Ni KK. Quantum interference in atom-exchange reactions. Science 2024:eadl6570. [PMID: 38753767 DOI: 10.1126/science.adl6570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Chemical reactions, where bonds break and form, are highly dynamic quantum processes. A fundamental question is whether coherence can be preserved in chemical reactions and then harnessed to generate entangled products. Here we investigated this question by studying the 2KRb → K2 + Rb2 reaction at 500 nK, focusing on the nuclear spin degrees of freedom. We prepared the initial nuclear spins in KRb in an entangled state by lowering the magnetic field to where the spin-spin interaction dominates and characterized the preserved coherence in nuclear spin wavefunction after the reaction. We observed an interference pattern that is consistent with full coherence at the end of the reaction, suggesting that entanglement prepared within the reactants could be redistributed through the atom-exchange process.
Collapse
Affiliation(s)
- Yi-Xiang Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Lingbang Zhu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Jeshurun Luke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - J J Arfor Houwman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Mark C Babin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Ming-Guang Hu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Jorapur V, Langin TK, Wang Q, Zheng G, DeMille D. High Density Loading and Collisional Loss of Laser-Cooled Molecules in an Optical Trap. PHYSICAL REVIEW LETTERS 2024; 132:163403. [PMID: 38701453 DOI: 10.1103/physrevlett.132.163403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 05/05/2024]
Abstract
We report optical trapping of laser-cooled molecules at sufficient density to observe molecule-molecule collisions for the first time in a bulk gas. SrF molecules from a red-detuned magneto-optical trap (MOT) are compressed and cooled in a blue-detuned MOT. Roughly 30% of these molecules are loaded into an optical dipole trap with peak number density n_{0}≈3×10^{10} cm^{-3} and temperature T≈40 μK. We observe two-body loss with rate coefficient β=2.7_{-0.8}^{+1.2}×10^{-10} cm^{3} s^{-1}. Achieving this density and temperature opens a path to evaporative cooling towards quantum degeneracy of laser-cooled molecules.
Collapse
Affiliation(s)
- Varun Jorapur
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Thomas K Langin
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Qian Wang
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Geoffrey Zheng
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - David DeMille
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
9
|
Zhang ZY, Sun Z, Duan T, Ding YK, Huang X, Liu JM. Entanglement Generation of Polar Molecules via Deep Reinforcement Learning. J Chem Theory Comput 2024; 20:1811-1820. [PMID: 38320113 DOI: 10.1021/acs.jctc.3c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Polar molecules are a promising platform for achieving scalable quantum information processing because of their long-range electric dipole-dipole interactions. Here, we take the coupled ultracold CaF molecules in an external electric field with gradient as qubits and concentrate on the creation of intermolecular entanglement with the method of deep reinforcement learning (RL). After sufficient training episodes, the educated RL agents can discover optimal time-dependent control fields that steer the molecular systems from separate states to two-qubit and three-qubit entangled states with high fidelities. We analyze the fidelities and the negativities (characterizing entanglement) of the generated states as a function of training episodes. Moreover, we present the population dynamics of the molecular systems under the influence of control fields discovered by the agents. Compared with the schemes for creating molecular entangled states based on optimal control theory, some conditions (e.g., molecular spacing and electric field gradient) adopted in this work are more feasible in the experiment. Our results demonstrate the potential of machine learning to effectively solve quantum control problems in polar molecular systems.
Collapse
Affiliation(s)
- Zuo-Yuan Zhang
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China
| | - Tao Duan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an 710119, China
| | - Yi-Kai Ding
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xinning Huang
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jin-Ming Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
10
|
Ding YK, Zhang ZY, Liu JM. Simulation of quantum walks on a circle with polar molecules via optimal control. J Chem Phys 2023; 159:204303. [PMID: 38010330 DOI: 10.1063/5.0174472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Quantum walks are the quantum counterpart of classical random walks and have various applications in quantum information science. Polar molecules have rich internal energy structure and long coherence time and thus are considered as a promising candidate for quantum information processing. In this paper, we propose a theoretical scheme for implementing discrete-time quantum walks on a circle with dipole-dipole coupled SrO molecules. The states of the walker and the coin are encoded in the pendular states of polar molecules induced by an external electric field. We design the optimal microwave pulses for implementing quantum walks on a four-node circle and a three-node circle by multi-target optimal control theory. To reduce the accumulation of decoherence and improve the fidelity, we successfully realize a step of quantum walk with only one optimal pulse. Moreover, we also encode the walker into a three-level molecular qutrit and a four-level molecular ququart and design the corresponding optimal pulses for quantum walks, which can reduce the number of molecules used. It is found that all the quantum walks on a circle in our scheme can be achieved via optimal control fields with high fidelities. Our results could shed some light on the implementation of discrete-time quantum walks and high-dimensional quantum information processing with polar molecules.
Collapse
Affiliation(s)
- Yi-Kai Ding
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zuo-Yuan Zhang
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jin-Ming Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
11
|
Burrow OS, Fasano RJ, Brand W, Wright MW, Li W, Ludlow AD, Riis E, Griffin PF, Arnold AS. Optimal binary gratings for multi-wavelength magneto-optical traps. OPTICS EXPRESS 2023; 31:40871-40880. [PMID: 38041377 DOI: 10.1364/oe.498606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Grating magneto-optical traps are an enabling quantum technology for portable metrological devices with ultracold atoms. However, beam diffraction efficiency and angle are affected by wavelength, creating a single-optic design challenge for laser cooling in two stages at two distinct wavelengths - as commonly used for loading, e.g., Sr or Yb atoms into optical lattice or tweezer clocks. Here, we optically characterize a wide variety of binary gratings at different wavelengths to find a simple empirical fit to experimental grating diffraction efficiency data in terms of dimensionless etch depth and period for various duty cycles. The model avoids complex 3D light-grating surface calculations, yet still yields results accurate to a few percent across a broad range of parameters. Gratings optimized for two (or more) wavelengths can now be designed in an informed manner suitable for a wide class of atomic species enabling advanced quantum technologies.
Collapse
|
12
|
Holland CM, Lu Y, Cheuk LW. Bichromatic Imaging of Single Molecules in an Optical Tweezer Array. PHYSICAL REVIEW LETTERS 2023; 131:053202. [PMID: 37595242 DOI: 10.1103/physrevlett.131.053202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/04/2023] [Indexed: 08/20/2023]
Abstract
We report on a novel bichromatic fluorescent imaging scheme for background-free detection of single CaF molecules trapped in an optical tweezer array. By collecting fluorescence on one optical transition while using another for laser cooling, we achieve an imaging fidelity of 97.7(2)% and a nondestructive detection fidelity of 95.5(6)%. Notably, these fidelities are achieved with a modest photon budget, suggesting that the method could be extended to more complex laser-coolable molecules with less favorable optical cycling properties. We also report on a framework and new methods to characterize various loss mechanisms that occur generally during fluorescent detection of trapped molecules, including two-photon decay and admixtures of higher excited states that are induced by the trapping light. In particular, we develop a novel method to dispersively measure transition matrix elements between electronically excited states. The method could also be used to measure arbitrarily small Franck-Condon factors between electronically excited states, which could significantly aid in ongoing efforts to laser cool complex polyatomic molecules.
Collapse
Affiliation(s)
- Connor M Holland
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yukai Lu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Lawrence W Cheuk
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
13
|
Burau JJ, Aggarwal P, Mehling K, Ye J. Blue-Detuned Magneto-optical Trap of Molecules. PHYSICAL REVIEW LETTERS 2023; 130:193401. [PMID: 37243657 DOI: 10.1103/physrevlett.130.193401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 05/29/2023]
Abstract
Direct laser cooling of molecules has reached a phase-space density exceeding 10^{-6} in optical traps but with rather small molecular numbers. To progress toward quantum degeneracy, a mechanism that combines sub-Doppler cooling and magneto-optical trapping would facilitate near unity transfer of ultracold molecules from the magneto-optical trap (MOT) to a conservative optical trap. Using the unique energy level structure of YO molecules, we demonstrate the first blue-detuned MOT for molecules that is optimized for both gray-molasses sub-Doppler cooling and relatively strong trapping forces. This first sub-Doppler molecular MOT provides an increase of phase-space density by 2 orders of magnitude over any previously reported molecular MOT.
Collapse
Affiliation(s)
- Justin J Burau
- JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309-0440, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| | - Parul Aggarwal
- JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309-0440, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| | - Kameron Mehling
- JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309-0440, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309-0440, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| |
Collapse
|
14
|
Tscherbul TV, Ye J, Rey AM. Robust Nuclear Spin Entanglement via Dipolar Interactions in Polar Molecules. PHYSICAL REVIEW LETTERS 2023; 130:143002. [PMID: 37084438 DOI: 10.1103/physrevlett.130.143002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
We propose a general protocol for on-demand generation of robust entangled states of nuclear and/or electron spins of ultracold ^{1}Σ and ^{2}Σ polar molecules using electric dipolar interactions. By encoding a spin-1/2 degree of freedom in a combined set of spin and rotational molecular levels, we theoretically demonstrate the emergence of effective spin-spin interactions of the Ising and XXZ forms, enabled by efficient magnetic control over electric dipolar interactions. We show how to use these interactions to create long-lived cluster and squeezed spin states.
Collapse
Affiliation(s)
- Timur V Tscherbul
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
15
|
Vilas NB, Hallas C, Anderegg L, Robichaud P, Winnicki A, Mitra D, Doyle JM. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 2022; 606:70-74. [PMID: 35650357 DOI: 10.1038/s41586-022-04620-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022]
Abstract
Laser cooling and trapping1,2, and magneto-optical trapping methods in particular2, have enabled groundbreaking advances in science, including Bose-Einstein condensation3-5, quantum computation with neutral atoms6,7 and high-precision optical clocks8. Recently, magneto-optical traps (MOTs) of diatomic molecules have been demonstrated9-12, providing access to research in quantum simulation13 and searches for physics beyond the standard model14. Compared with diatomic molecules, polyatomic molecules have distinct rotational and vibrational degrees of freedom that promise a variety of transformational possibilities. For example, ultracold polyatomic molecules would be uniquely suited to applications in quantum computation and simulation15-17, ultracold collisions18, quantum chemistry19 and beyond-the-standard-model searches20,21. However, the complexity of these molecules has so far precluded the realization of MOTs for polyatomic species. Here we demonstrate magneto-optical trapping of a polyatomic molecule, calcium monohydroxide (CaOH). After trapping, the molecules are laser cooled in a blue-detuned optical molasses to a temperature of 110 μK, which is below the Doppler cooling limit. The temperatures and densities achieved here make CaOH a viable candidate for a wide variety of quantum science applications, including quantum simulation and computation using optical tweezer arrays15,17,22,23. This work also suggests that laser cooling and magneto-optical trapping of many other polyatomic species24-27 will be both feasible and practical.
Collapse
Affiliation(s)
- Nathaniel B Vilas
- Department of Physics, Harvard University, Cambridge, MA, USA. .,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.
| | - Christian Hallas
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Loïc Anderegg
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Paige Robichaud
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Andrew Winnicki
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Debayan Mitra
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.,Department of Physics, Columbia University, New York, NY, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| |
Collapse
|
16
|
Lu Y, Holland CM, Cheuk LW. Molecular Laser Cooling in a Dynamically Tunable Repulsive Optical Trap. PHYSICAL REVIEW LETTERS 2022; 128:213201. [PMID: 35687464 DOI: 10.1103/physrevlett.128.213201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Recent work with laser-cooled molecules in attractive optical traps has shown that the differential ac Stark shifts arising from the trap light itself can become problematic, limiting collisional shielding efficiencies, rotational coherence times, and laser-cooling temperatures. In this Letter, we explore trapping and laser cooling of CaF molecules in a ring-shaped repulsive optical trap. The observed dependences of loss rates on temperature and barrier height show characteristic behavior of repulsive traps and indicate strongly suppressed average ac Stark shifts. Within the trap, we find that Λ-enhanced gray molasses cooling is effective, producing similar minimum temperatures as those obtained in free space. By combining in-trap laser cooling with dynamical reshaping of the trap, we also present a method that allows highly efficient and rapid transfer from molecular magneto-optical traps into conventional attractive optical traps, which has been an outstanding challenge for experiments to date. Notably, our method could allow nearly lossless transfer over millisecond timescales.
Collapse
Affiliation(s)
- Yukai Lu
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Connor M Holland
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Lawrence W Cheuk
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
17
|
Chen S. A Record Low for Laser-Cooled Molecules. PHYSICS 2021. [DOI: 10.1103/physics.14.s163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|