1
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Divoux T, Agoritsas E, Aime S, Barentin C, Barrat JL, Benzi R, Berthier L, Bi D, Biroli G, Bonn D, Bourrianne P, Bouzid M, Del Gado E, Delanoë-Ayari H, Farain K, Fielding S, Fuchs M, van der Gucht J, Henkes S, Jalaal M, Joshi YM, Lemaître A, Leheny RL, Manneville S, Martens K, Poon WCK, Popović M, Procaccia I, Ramos L, Richards JA, Rogers S, Rossi S, Sbragaglia M, Tarjus G, Toschi F, Trappe V, Vermant J, Wyart M, Zamponi F, Zare D. Ductile-to-brittle transition and yielding in soft amorphous materials: perspectives and open questions. SOFT MATTER 2024; 20:6868-6888. [PMID: 39028363 DOI: 10.1039/d3sm01740k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation, these materials undergo a noteworthy transition from a solid to a liquid state that reshapes the material microstructure. This yielding transition was the main theme of a workshop held from January 9 to 13, 2023 at the Lorentz Center in Leiden. The manuscript presented here offers a critical perspective on the subject, synthesizing insights from the various brainstorming sessions and informal discussions that unfolded during this week of vibrant exchange of ideas. The result of these exchanges takes the form of a series of open questions that represent outstanding experimental, numerical, and theoretical challenges to be tackled in the near future.
Collapse
Affiliation(s)
- Thibaut Divoux
- ENSL, CNRS, Laboratoire de physique, F-69342 Lyon, France.
| | - Elisabeth Agoritsas
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Stefano Aime
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, Paris, France
| | - Catherine Barentin
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Jean-Louis Barrat
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Roberto Benzi
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Daniel Bonn
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Philippe Bourrianne
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, Paris, France
| | - Mehdi Bouzid
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
| | - Emanuela Del Gado
- Georgetown University, Department of Physics, Institute for Soft Matter Synthesis and Metrology, Washington, DC, USA
| | - Hélène Delanoë-Ayari
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Kasra Farain
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Suzanne Fielding
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Silke Henkes
- Lorentz Institute, Leiden University, 2300 RA Leiden, The Netherlands
| | - Maziyar Jalaal
- Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Yogesh M Joshi
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Anaël Lemaître
- Navier, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | - Wilson C K Poon
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str.38, 01187 Dresden, Germany
| | - Itamar Procaccia
- Dept. of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Sino-Europe Complex Science Center, School of Mathematics, North University of China, Shanxi, Taiyuan 030051, China
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - James A Richards
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Simon Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Saverio Rossi
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Mauro Sbragaglia
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Federico Toschi
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- CNR-IAC, Via dei Taurini 19, 00185 Rome, Italy
| | - Véronique Trappe
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg 1700, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zürich, Vladimir Prelog Weg 5, 8032 Zürich, Switzerland
| | - Matthieu Wyart
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Davoud Zare
- Fonterra Research and Development Centre, Dairy Farm Road, Fitzherbert, Palmerston North 4442, New Zealand
- Nestlé Institute of Food Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| |
Collapse
|
4
|
Roshal DS, Fedorenko KK, Martin M, Baghdiguian S, Rochal SB. Topological balance of cell distributions in plane monolayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:265101. [PMID: 38537291 DOI: 10.1088/1361-648x/ad387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Most of normal proliferative epithelia of plants and metazoans are topologically invariant and characterized by similar cell distributions according to the number of cell neighbors (DCNs). Here we study peculiarities of these distributions and explain why the DCN obtained from the location of intercellular boundaries and that based on the Voronoi tessellation with nodes located on cell nuclei may differ from each other. As we demonstrate, special microdomains where four or more intercellular boundaries converge are topologically charged. Using this fact, we deduce a new equation describing the topological balance of the DCNs. The developed theory is applied for a series of microphotographs of non-tumoral epithelial cells of the human cervix (HCerEpiC) to improve the image processing near the edges of microphotographs and reveal the topological invariance of the examined monolayers. Special contact microdomains may be present in epithelia of various natures, however, considering the well-known vertex model of epithelium, we show that such contacts are absent in the usual solid-like state of the model and appear only in the liquid-like cancer state. Also, we discuss a possible biological role of special contacts in context of proliferative epithelium dynamics and tissue morphogenesis.
Collapse
Affiliation(s)
- Daria S Roshal
- Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don 344090, Russia
| | - Kirill K Fedorenko
- Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don 344090, Russia
| | - Marianne Martin
- VBIC, INSERM U1047, University of Montpellier, Montpellier 34095, France
| | - Stephen Baghdiguian
- Institut des Sciences de l'Evolution-Montpellier, Université de Montpellier, CNRS, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, Montpellier 34095, France
| | - Sergei B Rochal
- Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don 344090, Russia
| |
Collapse
|
5
|
Roshal DS, Azzag K, Fedorenko KK, Rochal SB, Baghdiguian S. Topological properties and shape of proliferative and nonproliferative cell monolayers. Phys Rev E 2023; 108:024404. [PMID: 37723673 DOI: 10.1103/physreve.108.024404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/02/2023] [Indexed: 09/20/2023]
Abstract
During embryonic development, structures with complex geometry can emerge from planar epithelial monolayers; studying these shape transitions is of key importance for revealing the biophysical laws involved in the morphogenesis of biological systems. Here, using the example of normal proliferative monkey kidney (COS) cell monolayers, we investigate global and local topological characteristics of this model system in dependence on its shape. The obtained distributions of cells by their valence demonstrate a difference between the spherical and planar monolayers. In addition, in both spherical and planar monolayers, the probability of observing a pair of neighboring cells with certain valences depends on the topological charge of the pair. The zero topological charge of the cell pair can increase the probability for the cells to be the nearest neighbors. We then test and confirm that analogous relationships take place in a more ordered spherical system with a larger fraction of 6-valent cells, namely, in the nonproliferative epithelium (follicular system) of ascidian species oocytes. However, unlike spherical COS cell monolayers, ascidian monolayers are prone to nonrandom agglomeration of 6-valent cells and have linear topological defects called scars and pleats. The reasons for this difference in morphology are discussed. The morphological peculiarities found are compared with predictions of the widely used vertex model of epithelium.
Collapse
Affiliation(s)
- Daria S Roshal
- Physics Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, MN 55455, USA
| | - Kirill K Fedorenko
- Physics Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Sergei B Rochal
- Physics Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Stephen Baghdiguian
- Institut des Sciences de l'Evolution-Montpellier, Université de Montpellier, CNRS, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34095 Montpellier, France
| |
Collapse
|
7
|
Fang C, Shao X, Tian Y, Chu Z, Lin Y. Size-dependent response of cells in epithelial tissue modulated by contractile stress fibers. Biophys J 2023; 122:1315-1324. [PMID: 36809876 PMCID: PMC10111366 DOI: 10.1016/j.bpj.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Although cells with distinct apical areas have been widely observed in epithelial tissues, how the size of cells affects their behavior during tissue deformation and morphogenesis as well as key physical factors modulating such influence remains elusive. Here, we showed that the elongation of cells within the monolayer under anisotropic biaxial stretching increases with their size because the strain released by local cell rearrangement (i.e., T1 transition) is more significant for small cells that possess higher contractility. On the other hand, by incorporating the nucleation, peeling, merging, and breakage dynamics of subcellular stress fibers into classical vertex formulation, we found that stress fibers with orientations predominantly aligned with the main stretching direction will be formed at tricellular junctions, in good agreement with recent experiments. The contractile forces generated by stress fibers help cells to resist imposed stretching, reduce the occurrence of T1 transitions, and, consequently, modulate their size-dependent elongation. Our findings demonstrate that epithelial cells could utilize their size and internal structure to regulate their physical and related biological behaviors. The theoretical framework proposed here can also be extended to investigate the roles of cell geometry and intracellular contraction in processes such as collective cell migration and embryo development.
Collapse
Affiliation(s)
- Chao Fang
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China; Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|