1
|
Yan LL, Bu JT, Zeng Q, Zhang K, Cui KF, Zhou F, Su SL, Chen L, Wang J, Chen G, Feng M. Experimental Verification of Demon-Involved Fluctuation Theorems. PHYSICAL REVIEW LETTERS 2024; 133:090402. [PMID: 39270181 DOI: 10.1103/physrevlett.133.090402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
The limit of energy saving in the control of small systems has recently attracted much interest due to the concept refinement of the Maxwell demon. Inspired by a newly proposed set of fluctuation theorems, we report the first experimental verification of these equalities and inequalities in an ultracold ^{40}Ca^{+} ion system, confirming the intrinsic nonequilibrium in the system due to involvement of the demon. Based on elaborately designed demon-involved control protocols, such as the Szilard engine protocol, we provide experimentally quantitative evidence of the dissipative information and observe tighter bounds of both the extracted work and the demon's efficacy than the limits predicted by the Sagawa-Ueda theorem. Our results substantiate a close connection between the physical nature of information and nonequilibrium processes at the microscale, which help to further understand the thermodynamic characteristics of information and the optimal design of nanoscale and smaller systems.
Collapse
Affiliation(s)
| | | | | | | | - K-F Cui
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
| | - F Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - S-L Su
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | | | | | | | | |
Collapse
|
2
|
Hohm U, Schiller C. Testing the Minimum System Entropy and the Quantum of Entropy. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1511. [PMID: 37998203 PMCID: PMC10670145 DOI: 10.3390/e25111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Experimental and theoretical results about entropy limits for macroscopic and single-particle systems are reviewed. All experiments confirm the minimum system entropy S⩾kln2. We clarify in which cases it is possible to speak about a minimum system entropykln2 and in which cases about a quantum of entropy. Conceptual tensions with the third law of thermodynamics, with the additivity of entropy, with statistical calculations, and with entropy production are resolved. Black hole entropy is surveyed. Claims for smaller system entropy values are shown to contradict the requirement of observability, which, as possibly argued for the first time here, also implies the minimum system entropy kln2. The uncertainty relations involving the Boltzmann constant and the possibility of deriving thermodynamics from the existence of minimum system entropy enable one to speak about a general principle that is valid across nature.
Collapse
Affiliation(s)
- Uwe Hohm
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | | |
Collapse
|
3
|
Guéry-Odelin D, Jarzynski C, Plata CA, Prados A, Trizac E. Driving rapidly while remaining in control: classical shortcuts from Hamiltonian to stochastic dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:035902. [PMID: 36535018 DOI: 10.1088/1361-6633/acacad] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Stochastic thermodynamics lays down a broad framework to revisit the venerable concepts of heat, work and entropy production for individual stochastic trajectories of mesoscopic systems. Remarkably, this approach, relying on stochastic equations of motion, introduces time into the description of thermodynamic processes-which opens the way to fine control them. As a result, the field of finite-time thermodynamics of mesoscopic systems has blossomed. In this article, after introducing a few concepts of control for isolated mechanical systems evolving according to deterministic equations of motion, we review the different strategies that have been developed to realize finite-time state-to-state transformations in both over and underdamped regimes, by the proper design of time-dependent control parameters/driving. The systems under study are stochastic, epitomized by a Brownian object immersed in a fluid; they are thus strongly coupled to their environment playing the role of a reservoir. Interestingly, a few of those methods (inverse engineering, counterdiabatic driving, fast-forward) are directly inspired by their counterpart in quantum control. The review also analyzes the control through reservoir engineering. Besides the reachability of a given target state from a known initial state, the question of the optimal path is discussed. Optimality is here defined with respect to a cost function, a subject intimately related to the field of information thermodynamics and the question of speed limit. Another natural extension discussed deals with the connection between arbitrary states or non-equilibrium steady states. This field of control in stochastic thermodynamics enjoys a wealth of applications, ranging from optimal mesoscopic heat engines to population control in biological systems.
Collapse
Affiliation(s)
- David Guéry-Odelin
- Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, Université de Toulouse, CNRS, Toulouse, France
| | - Christopher Jarzynski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States of America
- Department of Physics, University of Maryland, College Park, MD, United States of America
| | - Carlos A Plata
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | | |
Collapse
|
4
|
Sheng J, Yang C, Wu H. Nonequilibrium thermodynamics in cavity optomechanics. FUNDAMENTAL RESEARCH 2023; 3:75-86. [PMID: 38933566 PMCID: PMC11197698 DOI: 10.1016/j.fmre.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Classical thermodynamics has been a great achievement in dealing with systems that are in equilibrium or near equilibrium. As an emerging field, nonequilibrium thermodynamics provides a general framework for understanding the nonequilibrium processes, particularly in small systems that are typically far-from-equilibrium and are dominated by thermal or quantum fluctuations. Cavity optomechanical systems hold great promise among the various experimental platforms for studying nonequilibrium thermodynamics owing to their high controllability, excellent mechanical performance, and ability to operate deep in the quantum regime. Here, we present an overview of the recent advances in nonequilibrium thermodynamics with cavity optomechanical systems. The experimental results in entropy production assessment, fluctuation theorems, heat transfer, and heat engines are highlighted.
Collapse
Affiliation(s)
- Jiteng Sheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Cheng Yang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haibin Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
5
|
Liu F. Semi-Markov processes in open quantum systems: Connections and applications in counting statistics. Phys Rev E 2022; 106:054152. [PMID: 36559413 DOI: 10.1103/physreve.106.054152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Using the age-structure formalism, we definitely establish connections between semi-Markov processes and the dynamics of open quantum systems that satisfy the Markov quantum master equations. A generalized Feynman-Kac formula of the semi-Markov processes is also proposed. In addition to inheriting all statistical properties possessed by the piecewise deterministic processes of wave functions, the semi-Markov processes show their unique advantages in quantum counting statistics. Compared with the conventional method of the tilted quantum master equation, they can be applied to more general counting quantities. In particular, the terms involved in the method have precise probability meanings. We use a driven two-level quantum system to exemplify these results.
Collapse
Affiliation(s)
- Fei Liu
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
6
|
Zhang ZZ, Wu W. Work statistics and thermal phase transitions. Phys Rev E 2022; 106:034104. [PMID: 36266880 DOI: 10.1103/physreve.106.034104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Many previous studies have demonstrated that work statistics can exhibit certain singular behaviors in the quantum critical regimes of many-body systems at zero or very low temperatures. However, as the temperature increases, it is commonly believed that such singularities will vanish. Contrary to this common recognition, we report a nonanalytic behavior of the averaged work done, which occurs at finite temperature, in the Dicke model as well as the Lipkin-Meshkov-Glick model subjected to the sudden quenches of their work parameters. It is revealed that work statistics can be viewed as a signature of the thermal phase transition when the quenched parameters are tuned across the critical line that separates two different thermal phases.
Collapse
Affiliation(s)
- Ze-Zhou Zhang
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Wei Wu
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Verification of Information Thermodynamics in a Trapped Ion System. ENTROPY 2022; 24:e24060813. [PMID: 35741534 PMCID: PMC9222944 DOI: 10.3390/e24060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Information thermodynamics has developed rapidly over past years, and the trapped ions, as a controllable quantum system, have demonstrated feasibility to experimentally verify the theoretical predictions in the information thermodynamics. Here, we address some representative theories of information thermodynamics, such as the quantum Landauer principle, information equality based on the two-point measurement, information-theoretical bound of irreversibility, and speed limit restrained by the entropy production of system, and review their experimental demonstration in the trapped ion system. In these schemes, the typical physical processes, such as the entropy flow, energy transfer, and information flow, build the connection between thermodynamic processes and information variation. We then elucidate the concrete quantum control strategies to simulate these processes by using quantum operators and the decay paths in the trapped-ion system. Based on them, some significantly dynamical processes in the trapped ion system to realize the newly proposed information-thermodynamic models is reviewed. Although only some latest experimental results of information thermodynamics with a single trapped-ion quantum system are reviewed here, we expect to find more exploration in the future with more ions involved in the experimental systems.
Collapse
|
8
|
|