1
|
Fardian-Melamed N, Skripka A, Ursprung B, Lee C, Darlington TP, Teitelboim A, Qi X, Wang M, Gerton JM, Cohen BE, Chan EM, Schuck PJ. Infrared nanosensors of piconewton to micronewton forces. Nature 2025; 637:70-75. [PMID: 39743607 DOI: 10.1038/s41586-024-08221-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/15/2024] [Indexed: 01/04/2025]
Abstract
Mechanical force is an essential feature for many physical and biological processes1-7, and remote measurement of mechanical signals with high sensitivity and spatial resolution is needed for diverse applications, including robotics8, biophysics9,10, energy storage11 and medicine12,13. Nanoscale luminescent force sensors excel at measuring piconewton forces, whereas larger sensors have proven powerful in probing micronewton forces14-16. However, large gaps remain in the force magnitudes that can be probed remotely from subsurface or interfacial sites, and no individual, non-invasive sensor is capable of measuring over the large dynamic range needed to understand many systems14,17. Here we demonstrate Tm3+-doped avalanching-nanoparticle18 force sensors that can be addressed remotely by deeply penetrating near-infrared light and can detect piconewton to micronewton forces with a dynamic range spanning more than four orders of magnitude. Using atomic force microscopy coupled with single-nanoparticle optical spectroscopy, we characterize the mechanical sensitivity of the photon-avalanching process and reveal its exceptional force responsiveness. By manipulating the Tm3+ concentrations and energy transfer within the nanosensors, we demonstrate different optical force-sensing modalities, including mechanobrightening and mechanochromism. The adaptability of these nanoscale optical force sensors, along with their multiscale-sensing capability, enable operation in the dynamic and versatile environments present in real-world, complex structures spanning biological organisms to nanoelectromechanical systems.
Collapse
Affiliation(s)
| | - Artiom Skripka
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autόnoma de Madrid, Madrid, Spain
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Benedikt Ursprung
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Thomas P Darlington
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ayelet Teitelboim
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiao Qi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Maoji Wang
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA
| | - Jordan M Gerton
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Killeen A, Bertrand T, Lee CF. Machine learning topological defects in confluent tissues. BIOPHYSICAL REPORTS 2024; 4:100142. [PMID: 38313863 PMCID: PMC10837480 DOI: 10.1016/j.bpr.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Active nematics is an emerging paradigm for characterizing biological systems. One aspect of particularly intense focus is the role active nematic defects play in these systems, as they have been found to mediate a growing number of biological processes. Accurately detecting and classifying these defects in biological systems is, therefore, of vital importance to improving our understanding of such processes. While robust methods for defect detection exist for systems of elongated constituents, other systems, such as epithelial layers, are not well suited to such methods. Here, we address this problem by developing a convolutional neural network to detect and classify nematic defects in confluent cell layers. Crucially, our method is readily implementable on experimental images of cell layers and is specifically designed to be suitable for cells that are not rod shaped, which we demonstrate by detecting defects on experimental data using the trained model. We show that our machine learning model outperforms current defect detection techniques and that this manifests itself in our method as requiring less data to accurately capture defect properties. This could drastically improve the accuracy of experimental data interpretation while also reducing costs, advancing the study of nematic defects in biological systems.
Collapse
Affiliation(s)
- Andrew Killeen
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Thibault Bertrand
- Department of Mathematics, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
3
|
Bonn L, Ardaševa A, Doostmohammadi A. Elasticity tunes mechanical stress localization around active topological defects. SOFT MATTER 2023; 20:115-123. [PMID: 38050783 DOI: 10.1039/d3sm01113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Mechanical stresses are increasingly found to be associated with various biological functionalities. At the same time, topological defects are being identified across a diverse range of biological systems and are points of localized mechanical stress. It is therefore important to ask how mechanical stress localization around topological defects is controlled. Here, we use continuum simulations of nonequilibrium, fluctuating and active nematics to explore the patterns of stress localization, as well as their extent and intensity around topological defects. We find that by increasing the orientational elasticity of the material, the isotropic stress pattern around topological defects is changed substantially, from a stress dipole characterized by symmetric compression-tension regions around the core of the defect, to a localized stress monopole at the defect position. Moreover, we show that elastic anisotropy alters the extent and intensity of the stresses, and can result in the dominance of tension or compression around defects. Finally, including both nonequilibrium fluctuations and active stress generation, we find that the elastic constant tunes the relative effect of each, leading to the flipping of tension and compression regions around topological defects. This flipping of the tension-compression regions only by changing the elastic constant presents an interesting, simple, way of switching the dynamic behavior in active matter by changing a passive material property. We expect these findings to motivate further exploration tuning stresses in active biological materials by varying material properties of the constituent units.
Collapse
Affiliation(s)
- Lasse Bonn
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| | - Aleksandra Ardaševa
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| |
Collapse
|
4
|
Rozman J, Yeomans JM, Sknepnek R. Shape-Tension Coupling Produces Nematic Order in an Epithelium Vertex Model. PHYSICAL REVIEW LETTERS 2023; 131:228301. [PMID: 38101347 DOI: 10.1103/physrevlett.131.228301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023]
Abstract
We study the vertex model for epithelial tissue mechanics extended to include coupling between the cell shapes and tensions in cell-cell junctions. This coupling represents an active force which drives the system out of equilibrium and leads to the formation of nematic order interspersed with prominent, long-lived +1 defects. The defects in the nematic ordering are coupled to the shape of the cell tiling, affecting cell areas and coordinations. This intricate interplay between cell shape, size, and coordination provides a possible mechanism by which tissues could spontaneously develop long-range polarity through local mechanical forces without resorting to long-range chemical patterning.
Collapse
Affiliation(s)
- Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Rastko Sknepnek
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
5
|
Zhang G, Yeomans JM. Active Forces in Confluent Cell Monolayers. PHYSICAL REVIEW LETTERS 2023; 130:038202. [PMID: 36763395 DOI: 10.1103/physrevlett.130.038202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
We use a computational phase-field model together with analytical analysis to study how intercellular active forces can mediate individual cell morphology and collective motion in a confluent cell monolayer. We explore the regime where intercellular forces dominate the tissue dynamics, and polar forces are negligible. Contractile intercellular interactions lead to cell elongation, nematic ordering, and active turbulence characterized by motile topological defects. Extensile interactions result in frustration, and perpendicular cell orientations become more prevalent. Furthermore, we show that contractile behavior can change to extensile behavior if anisotropic fluctuations in cell shape are considered.
Collapse
Affiliation(s)
- Guanming Zhang
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
6
|
Bonn L, Ardaševa A, Mueller R, Shendruk TN, Doostmohammadi A. Fluctuation-induced dynamics of nematic topological defects. Phys Rev E 2022; 106:044706. [PMID: 36397561 DOI: 10.1103/physreve.106.044706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Topological defects are increasingly being identified in various biological systems, where their characteristic flow fields and stress patterns are associated with continuous active stress generation by biological entities. Here, using numerical simulations of continuum fluctuating nematohydrodynamics, we show that even in the absence of any specific form of active stresses associated with self-propulsion, mesoscopic fluctuations in either orientational alignment or hydrodynamics can independently result in flow patterns around topological defects that resemble the ones observed in active systems. Our simulations further show the possibility of extensile- and contractile-like motion of fluctuation-induced positive half-integer topological defects. Remarkably, isotropic stress fields also reproduce the experimentally measured stress patterns around topological defects in epithelia. Our findings further reveal that extensile- or contractile-like flow and stress patterns around fluctuation-induced defects are governed by passive elastic stresses and flow-aligning behavior of the nematics.
Collapse
Affiliation(s)
- Lasse Bonn
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| | - Aleksandra Ardaševa
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Tyler N Shendruk
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| |
Collapse
|