1
|
Han Z, Zhang L, Li X, Li Y, Qu T, Yu X, Yu X, Ng J, Lin Z, Chen J. Pure optical twist with zero net torque. OPTICS EXPRESS 2024; 32:8484-8495. [PMID: 38439503 DOI: 10.1364/oe.518075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/11/2024] [Indexed: 03/06/2024]
Abstract
In photonic systems, bilayer or multilayer systems exhibit numerous exciting phenomena induced by twisting. Thus, it is highly desired to explore the twisting effect by engineering the light-matter interactions. Optical torque, an important means in optical micromanipulation, can rotate micro-objects in various ways, enabling a wide range of promising applications. In this study, we present an interesting phenomenon called "pure optical twist" (POT), which emerges when a bilayer structure with specific symmetry is illuminated by counter-propagating lights with opposite spin and/or orbital angular momentum. Remarkably, this leads to zero net optical torque but yet possesses an interesting mechanical effect of bilayer system twisting. The crucial determinant of this phenomenon is the rotational symmetries of each layer, which govern the allowed azimuthal channels of the scattered wave. When the rotational symmetries do not allow these channels to overlap, no resultant torque is observed. Our work will encourage further exploration of the twisting effect through engineered light-matter interactions. This opens up the possibility of creating twisted bilayer systems using optical means, and constructing a stable bilayer optical motor that maintains identical rotation frequencies for both layers.
Collapse
|
2
|
Shi Y, Zhu T, Liu AQ, Zhou LM, Nieto-Vesperinas M, Hassanfiroozi A, Liu J, Tsai DP, Li Z, Ding W, Wang F, Li H, Song Q, Xu X, Li B, Cheng X, Wu PC, Chan CT, Qiu CW. Inverse Optical Torques on Dielectric Nanoparticles in Elliptically Polarized Light Waves. PHYSICAL REVIEW LETTERS 2022; 129:053902. [PMID: 35960581 DOI: 10.1103/physrevlett.129.053902] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Elliptically polarized light waves carry the spin angular momentum (SAM), so they can exert optical torques on nanoparticles. Usually, the rotation follows the same direction as the SAM due to momentum conservation. It is counterintuitive to observe the reversal of optical torque acting on an ordinary dielectric nanoparticle illuminated by an elliptically or circularly polarized light wave. Here, we demonstrate that negative optical torques, which are opposite to the direction of SAM, can ubiquitously emerge when elliptically polarized light waves are impinged on dielectric nanoparticles obliquely. Intriguingly, the rotation can be switched between clockwise and counterclockwise directions by controlling the incident angle of light. Our study suggests a new playground to harness polarization-dependent optical force and torque for advancing optical manipulations.
Collapse
Affiliation(s)
- Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tongtong Zhu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Manuel Nieto-Vesperinas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Amir Hassanfiroozi
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Weiqiang Ding
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Fan Wang
- School of Physics, Beihang University, Beijing 100191, China
| | - Hang Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaohao Xu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Che Ting Chan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|