1
|
Zhu T, Li C, Chu X. Fluctuating Chromatin Facilitates Enhancer-Promoter Communication by Regulating Transcriptional Clustering Dynamics. J Phys Chem Lett 2024; 15:11428-11436. [PMID: 39508790 DOI: 10.1021/acs.jpclett.4c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Enhancers regulate gene expression by forming contacts with distant promoters. Phase-separated condensates or clusters formed by transcription factors (TFs) and cofactors are thought to facilitate these enhancer-promoter (E-P) interactions. Using polymer physics, we developed distinct coarse-grained chromatin models that produce similar ensemble-averaged Hi-C maps but with "stable" and "dynamic" characteristics. Our findings, consistent with recent experiments, reveal a multistep E-P communication process. The dynamic model facilitates E-P proximity by enhancing TF clustering and subsequently promotes direct E-P interactions by destabilizing the TF clusters through chain flexibility. Our study promotes physical understanding of the molecular mechanisms governing E-P communication in transcriptional regulation.
Collapse
Affiliation(s)
- Tao Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Shanghai Center for Mathematical Sciences and School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Lao Z, Kamat KD, Jiang Z, Zhang B. OpenNucleome for high-resolution nuclear structural and dynamical modeling. eLife 2024; 13:RP93223. [PMID: 39146200 PMCID: PMC11326778 DOI: 10.7554/elife.93223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
The intricate structural organization of the human nucleus is fundamental to cellular function and gene regulation. Recent advancements in experimental techniques, including high-throughput sequencing and microscopy, have provided valuable insights into nuclear organization. Computational modeling has played significant roles in interpreting experimental observations by reconstructing high-resolution structural ensembles and uncovering organization principles. However, the absence of standardized modeling tools poses challenges for furthering nuclear investigations. We present OpenNucleome-an open-source software designed for conducting GPU-accelerated molecular dynamics simulations of the human nucleus. OpenNucleome offers particle-based representations of chromosomes at a resolution of 100 KB, encompassing nuclear lamina, nucleoli, and speckles. This software furnishes highly accurate structural models of nuclear architecture, affording the means for dynamic simulations of condensate formation, fusion, and exploration of non-equilibrium effects. We applied OpenNucleome to uncover the mechanisms driving the emergence of 'fixed points' within the nucleus-signifying genomic loci robustly anchored in proximity to specific nuclear bodies for functional purposes. This anchoring remains resilient even amidst significant fluctuations in chromosome radial positions and nuclear shapes within individual cells. Our findings lend support to a nuclear zoning model that elucidates genome functionality. We anticipate OpenNucleome to serve as a valuable tool for nuclear investigations, streamlining mechanistic explorations and enhancing the interpretation of experimental observations.
Collapse
Affiliation(s)
- Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Kartik D Kamat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Zhongling Jiang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
3
|
Liu S, Athreya A, Lao Z, Zhang B. From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization. Annu Rev Biophys 2024; 53:221-245. [PMID: 38346246 PMCID: PMC11369498 DOI: 10.1146/annurev-biophys-030822-032650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Advait Athreya
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
4
|
Lao Z, Kamat K, Jiang Z, Zhang B. OpenNucleome for high resolution nuclear structural and dynamical modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562451. [PMID: 37905090 PMCID: PMC10614770 DOI: 10.1101/2023.10.16.562451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The intricate structural organization of the human nucleus is fundamental to cellular function and gene regulation. Recent advancements in experimental techniques, including high-throughput sequencing and microscopy, have provided valuable insights into nuclear organization. Computational modeling has played significant roles in interpreting experimental observations by reconstructing high-resolution structural ensembles and uncovering organization principles. However, the absence of standardized modeling tools poses challenges for furthering nuclear investigations. We present OpenNucleome-an open-source software designed for conducting GPU-accelerated molecular dynamics simulations of the human nucleus. OpenNucleome offers particle-based representations of chromosomes at a resolution of 100 KB, encompassing nuclear lamina, nucleoli, and speckles. This software furnishes highly accurate structural models of nuclear architecture, affording the means for dynamic simulations of condensate formation, fusion, and exploration of non-equilibrium effects. We applied OpenNucleome to uncover the mechanisms driving the emergence of "fixed points" within the nucleus-signifying genomic loci robustly anchored in proximity to specific nuclear bodies for functional purposes. This anchoring remains resilient even amidst significant fluctuations in chromosome radial positions and nuclear shapes within individual cells. Our findings lend support to a nuclear zoning model that elucidates genome functionality. We anticipate OpenNucleome to serve as a valuable tool for nuclear investigations, streamlining mechanistic explorations and enhancing the interpretation of experimental observations.
Collapse
Affiliation(s)
- Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kartik Kamat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhongling Jiang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
5
|
Feng C, Wang J, Chu X. Large-scale data-driven and physics-based models offer insights into the relationships among the structures, dynamics, and functions of chromosomes. J Mol Cell Biol 2023; 15:mjad042. [PMID: 37365687 PMCID: PMC10782906 DOI: 10.1093/jmcb/mjad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023] Open
Abstract
The organized three-dimensional chromosome architecture in the cell nucleus provides scaffolding for precise regulation of gene expression. When the cell changes its identity in the cell-fate decision-making process, extensive rearrangements of chromosome structures occur accompanied by large-scale adaptations of gene expression, underscoring the importance of chromosome dynamics in shaping genome function. Over the last two decades, rapid development of experimental methods has provided unprecedented data to characterize the hierarchical structures and dynamic properties of chromosomes. In parallel, these enormous data offer valuable opportunities for developing quantitative computational models. Here, we review a variety of large-scale polymer models developed to investigate the structures and dynamics of chromosomes. Different from the underlying modeling strategies, these approaches can be classified into data-driven ('top-down') and physics-based ('bottom-up') categories. We discuss their contributions to offering valuable insights into the relationships among the structures, dynamics, and functions of chromosomes and propose the perspective of developing data integration approaches from different experimental technologies and multidisciplinary theoretical/simulation methods combined with different modeling strategies.
Collapse
Affiliation(s)
- Cibo Feng
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- College of Physics, Jilin University, Changchun 130012, China
| | - Jin Wang
- Department of Chemistry and Physics, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| |
Collapse
|
6
|
Chu X, Wang J. Quantifying the large-scale chromosome structural dynamics during the mitosis-to-G1 phase transition of cell cycle. Open Biol 2023; 13:230175. [PMID: 37907089 PMCID: PMC10618054 DOI: 10.1098/rsob.230175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Cell cycle is known to be regulated by the underlying gene network. Chromosomes, which serve as the scaffold for gene expressions, undergo significant structural reorganizations during mitosis. Understanding the mechanism of the cell cycle from the chromosome structural perspective remains a grand challenge. In this study, we applied an integrated theoretical approach to investigate large-scale chromosome structural dynamics during the mitosis-to-G1 phase transition. We observed that the chromosome structural expansion and adaptation of the structural asphericity do not occur synchronously and attributed this behaviour to the unique unloading sequence of the two types of condensins. Furthermore, we observed that the coherent motions between the chromosomal loci are primarily enhanced within the topologically associating domains (TADs) as cells progress to the G1 phase, suggesting that TADs can be considered as both structural and dynamical units for organizing the three-dimensional chromosome. Our analysis also reveals that the quantified pathways of chromosome structural reorganization during the mitosis-to-G1 phase transition exhibit high stochasticity at the single-cell level and show nonlinear behaviours in changing TADs and contacts formed at the long-range regions. Our findings offer valuable insights into large-scale chromosome structural dynamics after mitosis.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Schuette G, Ding X, Zhang B. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction. Biophys J 2023; 122:3425-3438. [PMID: 37496267 PMCID: PMC10502442 DOI: 10.1016/j.bpj.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Genome-wide chromosome conformation capture (Hi-C) experiments have revealed many structural features of chromatin across multiple length scales. Further understanding genome organization requires relating these discoveries to the mechanisms that establish chromatin structures and reconstructing these structures in three dimensions, but both objectives are difficult to achieve with existing algorithms that are often computationally expensive. To alleviate this challenge, we present an algorithm that efficiently converts Hi-C data into contact energies, which measure the interaction strength between genomic loci brought into proximity. Contact energies are local quantities unaffected by the topological constraints that correlate Hi-C contact probabilities. Thus, extracting contact energies from Hi-C contact probabilities distills the biologically unique information contained in the data. We show that contact energies reveal the location of chromatin loop anchors, support a phase separation mechanism for genome compartmentalization, and parameterize polymer simulations that predict three-dimensional chromatin structures. Therefore, we anticipate that contact energy extraction will unleash the full potential of Hi-C data and that our inversion algorithm will facilitate the widespread adoption of contact energy analysis.
Collapse
Affiliation(s)
- Greg Schuette
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
8
|
Schuette G, Ding X, Zhang B. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533194. [PMID: 36993500 PMCID: PMC10055272 DOI: 10.1101/2023.03.17.533194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genome-wide chromosome conformation capture (Hi-C) experiments have revealed many structural features of chromatin across multiple length scales. Further understanding genome organization requires relating these discoveries to the mechanisms that establish chromatin structures and reconstructing these structures in three dimensions, but both objectives are difficult to achieve with existing algorithms that are often computationally expensive. To alleviate this challenge, we present an algorithm that efficiently converts Hi-C data into contact energies, which measure the interaction strength between genomic loci brought into proximity. Contact energies are local quantities unaffected by the topological constraints that correlate Hi-C contact probabilities. Thus, extracting contact energies from Hi-C contact probabilities distills the biologically unique information contained in the data. We show that contact energies reveal the location of chromatin loop anchors, support a phase separation mechanism for genome compartmentalization, and parameterize polymer simulations that predict three-dimensional chromatin structures. Therefore, we anticipate that contact energy extraction will unleash the full potential of Hi-C data and that our inversion algorithm will facilitate the widespread adoption of contact energy analysis.
Collapse
Affiliation(s)
- Greg Schuette
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Chu X, Wang J. Insights into the cell fate decision-making processes from chromosome structural reorganizations. BIOPHYSICS REVIEWS 2022; 3:041402. [PMID: 38505520 PMCID: PMC10914134 DOI: 10.1063/5.0107663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/25/2022] [Indexed: 03/21/2024]
Abstract
The cell fate decision-making process, which provides the capability of a cell transition to a new cell type, involves the reorganizations of 3D genome structures. Currently, the high temporal resolution picture of how the chromosome structural rearrangements occur and further influence the gene activities during the cell-state transition is still challenging to acquire. Here, we study the chromosome structural reorganizations during the cell-state transitions among the pluripotent embryonic stem cell, the terminally differentiated normal cell, and the cancer cell using a nonequilibrium landscape-switching model implemented in the molecular dynamics simulation. We quantify the chromosome (de)compaction pathways during the cell-state transitions and find that the two pathways having the same destinations can merge prior to reaching the final states. The chromosomes at the merging states have similar structural geometries but can differ in long-range compartment segregation and spatial distribution of the chromosomal loci and genes, leading to cell-type-specific transition mechanisms. We identify the irreversible pathways of chromosome structural rearrangements during the forward and reverse transitions connecting the same pair of cell states, underscoring the critical roles of nonequilibrium dynamics in the cell-state transitions. Our results contribute to the understanding of the cell fate decision-making processes from the chromosome structural perspective.
Collapse
Affiliation(s)
- Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|