1
|
Tomaz AA, Mattos RS, Barbatti M. Gravitationally-induced wave function collapse time for molecules. Phys Chem Chem Phys 2024; 26:20785-20798. [PMID: 39054922 PMCID: PMC11305101 DOI: 10.1039/d4cp02364a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The Diósi-Penrose model states that the wave function collapse ending a quantum superposition occurs due to the instability of coexisting gravitational potentials created by distinct geometric conformations of the system in different states. The Heisenberg time-energy principle can be invoked to estimate the collapse time for the energy associated with this instability, the gravitational self-energy. This paper develops atomistic models to calculate the Diósi-Penrose collapse time. It applies them to a range of systems, from small molecules to large biological structures and macroscopic systems. An experiment is suggested to test the Diósi-Penrose hypothesis, and we critically examine the model, highlighting challenges from an atomistic perspective, such as gravitational self-energy saturation and limited extensivity.
Collapse
Affiliation(s)
| | | | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France.
- Institut Universitaire de France, Paris, 75231, France
| |
Collapse
|
2
|
Piscicchia K, Donadi S, Manti S, Bassi A, Derakhshani M, Diósi L, Curceanu C. X-Ray Emission from Atomic Systems Can Distinguish between Prevailing Dynamical Wave-Function Collapse Models. PHYSICAL REVIEW LETTERS 2024; 132:250203. [PMID: 38996255 DOI: 10.1103/physrevlett.132.250203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 04/17/2024] [Indexed: 07/14/2024]
Abstract
In this work the spontaneous electromagnetic radiation from atomic systems, induced by dynamical wave-function collapse, is investigated in the x-ray domain. Strong departures are evidenced with respect to the simple cases considered until now in the literature, in which the emission is either perfectly coherent (protons in the same nuclei) or incoherent (electrons). In this low-energy regime the spontaneous radiation rate strongly depends on the atomic species under investigation and, for the first time, is found to depend on the specific collapse model.
Collapse
|
3
|
Arnquist IJ, Avignone FT, Barabash AS, Barton CJ, Bhimani KH, Blalock E, Bos B, Busch M, Buuck M, Caldwell TS, Chan YD, Christofferson CD, Chu PH, Clark ML, Cuesta C, Detwiler JA, Efremenko Y, Ejiri H, Elliott SR, Giovanetti GK, Green MP, Gruszko J, Guinn IS, Guiseppe VE, Haufe CR, Henning R, Hervas Aguilar D, Hoppe EW, Hostiuc A, Kidd MF, Kim I, Kouzes RT, Lannen V TE, Li A, Lopez AM, López-Castaño JM, Martin EL, Martin RD, Massarczyk R, Meijer SJ, Mertens S, Oli TK, Othman G, Paudel LS, Pettus W, Poon AWP, Radford DC, Rager J, Reine AL, Rielage K, Ruof NW, Schaper DC, Tedeschi D, Varner RL, Vasilyev S, Wilkerson JF, Wiseman C, Xu W, Yu CH, Zhu BX. Exotic Dark Matter Search with the Majorana Demonstrator. PHYSICAL REVIEW LETTERS 2024; 132:041001. [PMID: 38335333 DOI: 10.1103/physrevlett.132.041001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024]
Abstract
With excellent energy resolution and ultralow-level radiogenic backgrounds, the high-purity germanium detectors in the Majorana Demonstrator enable searches for several classes of exotic dark matter (DM) models. In this work, we report new experimental limits on keV-scale sterile neutrino DM via the transition magnetic moment from conversion to active neutrinos ν_{s}→ν_{a}. We report new limits on fermionic dark matter absorption (χ+A→ν+A) and sub-GeV DM-nucleus 3→2 scattering (χ+χ+A→ϕ+A), and new exclusion limits for bosonic dark matter (axionlike particles and dark photons). These searches utilize the (1-100)-keV low-energy region of a 37.5-kg y exposure collected by the Demonstrator between May 2016 and November 2019 using a set of ^{76}Ge-enriched detectors whose surface exposure time was carefully controlled, resulting in extremely low levels of cosmogenic activation.
Collapse
Affiliation(s)
- I J Arnquist
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - F T Avignone
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - A S Barabash
- National Research Center "Kurchatov Institute" Institute for Theoretical and Experimental Physics, Moscow 117218, Russia
| | - C J Barton
- Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - K H Bhimani
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - E Blalock
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - B Bos
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - M Busch
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - M Buuck
- Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - T S Caldwell
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Y-D Chan
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | - P-H Chu
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M L Clark
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - C Cuesta
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT 28040, Madrid, Spain
| | - J A Detwiler
- Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Yu Efremenko
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - H Ejiri
- Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - S R Elliott
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - G K Giovanetti
- Physics Department, Williams College, Williamstown, Massachusetts 01267, USA
| | - M P Green
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - J Gruszko
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - I S Guinn
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - V E Guiseppe
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - C R Haufe
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - R Henning
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - D Hervas Aguilar
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - E W Hoppe
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - A Hostiuc
- Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - M F Kidd
- Tennessee Tech University, Cookeville, Tennessee 38505, USA
| | - I Kim
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - R T Kouzes
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - T E Lannen V
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - A Li
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - A M Lopez
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | | | - E L Martin
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - R D Martin
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R Massarczyk
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - S J Meijer
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - S Mertens
- Max-Planck-Institut für Physik, München 80805, Germany
- Physik Department and Excellence Cluster Universe, Technische Universität, München 85748, Germany
| | - T K Oli
- Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - G Othman
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - L S Paudel
- Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - W Pettus
- IU Center for Exploration of Energy and Matter, and Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| | - A W P Poon
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - D C Radford
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - J Rager
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - A L Reine
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - K Rielage
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - N W Ruof
- Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - D C Schaper
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D Tedeschi
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - R L Varner
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - S Vasilyev
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - J F Wilkerson
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - C Wiseman
- Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - W Xu
- Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - C-H Yu
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - B X Zhu
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
4
|
Piscicchia K, Porcelli A, Bassi A, Bazzi M, Bragadireanu M, Cargnelli M, Clozza A, De Paolis L, Del Grande R, Derakhshani M, Lajos D, Donadi S, Guaraldo C, Iliescu M, Laubenstein M, Manti S, Marton J, Miliucci M, Napolitano F, Scordo A, Sgaramella F, Sirghi DL, Sirghi F, Vazquez Doce O, Zmeskal J, Curceanu C. A Novel Approach to Parameter Determination of the Continuous Spontaneous Localization Collapse Model. ENTROPY (BASEL, SWITZERLAND) 2023; 25:295. [PMID: 36832661 PMCID: PMC9955578 DOI: 10.3390/e25020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Models of dynamical wave function collapse consistently describe the breakdown of the quantum superposition with the growing mass of the system by introducing non-linear and stochastic modifications to the standard Schrödinger dynamics. Among them, Continuous Spontaneous Localization (CSL) was extensively investigated both theoretically and experimentally. Measurable consequences of the collapse phenomenon depend on different combinations of the phenomenological parameters of the model-the strength λ and the correlation length rC-and have led, so far, to the exclusion of regions of the admissible (λ-rC) parameters space. We developed a novel approach to disentangle the λ and rC probability density functions, which discloses a more profound statistical insight.
Collapse
Affiliation(s)
- Kristian Piscicchia
- Centro Ricerche Enrico Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, 00184 Rome, Italy
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
| | - Alessio Porcelli
- Centro Ricerche Enrico Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, 00184 Rome, Italy
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
| | - Angelo Bassi
- Department of Physics, University of Trieste, 34127 Trieste, Italy
- Section of Trieste, Istituto Nazionale di Fisica Nucleare, 34149 Trieste, Italy
| | | | - Mario Bragadireanu
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
- IFIN-HH, Institutul National pentru Fizica si Inginerie Nucleara Horia Hulubei, 077125 Măgurele, Romania
| | - Michael Cargnelli
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
- Stefan-Meyer-Institute for Subatomic Physics, Austrian Academy of Science, 1030 Wien, Austria
| | - Alberto Clozza
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
| | - Luca De Paolis
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
| | - Raffaele Del Grande
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
- Excellence Cluster Universe, Technische Universität München, 80333 München, Germany
| | | | - Diósi Lajos
- Department of Physics of Complex Systems, Eötvös Loránd University, 1117 Budapest, Hungary
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, 1525 Budapest, Hungary
| | - Sandro Donadi
- Section of Trieste, Istituto Nazionale di Fisica Nucleare, 34149 Trieste, Italy
| | - Carlo Guaraldo
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
| | - Mihai Iliescu
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
| | | | - Simone Manti
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
| | - Johann Marton
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
- Stefan-Meyer-Institute for Subatomic Physics, Austrian Academy of Science, 1030 Wien, Austria
| | - Marco Miliucci
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
| | | | | | | | - Diana Laura Sirghi
- Centro Ricerche Enrico Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, 00184 Rome, Italy
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
- IFIN-HH, Institutul National pentru Fizica si Inginerie Nucleara Horia Hulubei, 077125 Măgurele, Romania
| | - Florin Sirghi
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
- IFIN-HH, Institutul National pentru Fizica si Inginerie Nucleara Horia Hulubei, 077125 Măgurele, Romania
| | | | - Johann Zmeskal
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
- Stefan-Meyer-Institute for Subatomic Physics, Austrian Academy of Science, 1030 Wien, Austria
| | - Catalina Curceanu
- Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy
- IFIN-HH, Institutul National pentru Fizica si Inginerie Nucleara Horia Hulubei, 077125 Măgurele, Romania
| |
Collapse
|
5
|
Toroš M, Cromb M, Paternostro M, Faccio D. Generation of Entanglement from Mechanical Rotation. PHYSICAL REVIEW LETTERS 2022; 129:260401. [PMID: 36608206 DOI: 10.1103/physrevlett.129.260401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/01/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Many phenomena and fundamental predictions, ranging from Hawking radiation to the early evolution of the Universe rely on the interplay between quantum mechanics and gravity or more generally, quantum mechanics in curved spacetimes. However, our understanding is hindered by the lack of experiments that actually allow us to probe quantum mechanics in curved spacetime in a repeatable and accessible way. Here we propose an experimental scheme for a photon that is prepared in a path superposition state across two rotating Sagnac interferometers that have different diameters and thus represent a superposition of two different spacetimes. We predict the generation of genuine entanglement even at low rotation frequencies and show how these effects could be observed even due to the Earth's rotation. These predictions provide an accessible platform in which to study the role of the underlying spacetime in the generation of entanglement.
Collapse
Affiliation(s)
- Marko Toroš
- School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Marion Cromb
- School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Mauro Paternostro
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom
| | - Daniele Faccio
- School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
6
|
Arnquist IJ, Avignone FT, Barabash AS, Barton CJ, Bhimani KH, Blalock E, Bos B, Busch M, Buuck M, Caldwell TS, Chan YD, Christofferson CD, Chu PH, Clark ML, Cuesta C, Detwiler JA, Efremenko Y, Ejiri H, Elliott SR, Giovanetti GK, Green MP, Gruszko J, Guinn IS, Guiseppe VE, Haufe CR, Henning R, Hervas Aguilar D, Hoppe EW, Hostiuc A, Kidd MF, Kim I, Kouzes RT, Lannen V TE, Li A, Lopez AM, López-Castaño JM, Martin EL, Martin RD, Massarczyk R, Meijer SJ, Oli TK, Othman G, Paudel LS, Pettus W, Poon AWP, Radford DC, Reine AL, Rielage K, Ruof NW, Schaper DC, Tedeschi D, Varner RL, Vasilyev S, Wilkerson JF, Wiseman C, Xu W, Yu CH, Zhu BX. Search for Solar Axions via Axion-Photon Coupling with the Majorana Demonstrator. PHYSICAL REVIEW LETTERS 2022; 129:081803. [PMID: 36053699 DOI: 10.1103/physrevlett.129.081803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Axions were originally proposed to explain the strong-CP problem in QCD. Through axion-photon coupling, the Sun could be a major source of axions, which could be measured in solid state detection experiments with enhancements due to coherent Primakoff-Bragg scattering. The Majorana Demonstrator experiment has searched for solar axions with a set of ^{76}Ge-enriched high purity germanium detectors using a 33 kg-yr exposure collected between January, 2017 and November, 2019. A temporal-energy analysis gives a new limit on the axion-photon coupling as g_{aγ}<1.45×10^{-9} GeV^{-1} (95% confidence level) for axions with mass up to 100 eV/c^{2}. This improves laboratory-based limits between about 1 eV/c^{2} and 100 eV/c^{2}.
Collapse
Affiliation(s)
- I J Arnquist
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - F T Avignone
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - A S Barabash
- National Research Center "Kurchatov Institute" Institute for Theoretical and Experimental Physics, Moscow, 117218 Russia
| | - C J Barton
- Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - K H Bhimani
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - E Blalock
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - B Bos
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - M Busch
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - M Buuck
- Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - T S Caldwell
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - Y-D Chan
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | - P-H Chu
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M L Clark
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - C Cuesta
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT 28040, Madrid, Spain
| | - J A Detwiler
- Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Yu Efremenko
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - H Ejiri
- Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - S R Elliott
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - G K Giovanetti
- Physics Department, Williams College, Williamstown, Massachusetts 01267, USA
| | - M P Green
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - J Gruszko
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - I S Guinn
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - V E Guiseppe
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - C R Haufe
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - R Henning
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - D Hervas Aguilar
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - E W Hoppe
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - A Hostiuc
- Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - M F Kidd
- Tennessee Tech University, Cookeville, Tennessee 38505, USA
| | - I Kim
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - R T Kouzes
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - T E Lannen V
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - A Li
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - A M Lopez
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | | | - E L Martin
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - R D Martin
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R Massarczyk
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - S J Meijer
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - T K Oli
- Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - G Othman
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - L S Paudel
- Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - W Pettus
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
- IU Center for Exploration of Energy and Matter, Bloomington, Indiana 47408, USA
| | - A W P Poon
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - D C Radford
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - A L Reine
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - K Rielage
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - N W Ruof
- Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - D C Schaper
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D Tedeschi
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - R L Varner
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - S Vasilyev
- Joint Institute for Nuclear Research, Dubna, 141980 Russia
| | - J F Wilkerson
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
| | - C Wiseman
- Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - W Xu
- Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - C-H Yu
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - B X Zhu
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|