1
|
Li J, Qi Y, Yang Q, Yue L, Yao C, Chen Z, Meng S, Xiang D, Cao J. Femtosecond Electron Diffraction Reveals Local Disorder and Local Anharmonicity in Thermoelectric SnSe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313742. [PMID: 38444186 DOI: 10.1002/adma.202313742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Indexed: 03/07/2024]
Abstract
In addition to long-range periodicity, local disorder, with local structures deviating from the average lattice structure, dominates the physical properties of phonons, electrons, and spin subsystems in crystalline functional materials. Experimentally characterizing the 3D atomic configuration of such a local disorder and correlating it with advanced functions remains challenging. Using a combination of femtosecond electron diffraction, structure factor calculations, and time-dependent density functional theory molecular dynamics simulations, the static local disorder and its local anharmonicity in thermoelectric SnSe are identified exclusively. The ultrafast structural dynamics reveal that the crystalline SnSe is composed of multiple locally correlated configurations dominated by the static off-symmetry displacements of Sn (≈0.4 Å) and such a set of locally correlated structures is termed local disorder. Moreover, the anharmonicity of this local disorder induces an ultrafast atomic displacement within 100 fs, indicating the signature of probable THz Einstein oscillators. The identified local disorder and local anharmonicity suggest a glass-like thermal transport channel, which updates the fundamental insight into the long-debated ultralow thermal conductivity of SnSe. The method of revealing the 3D local disorder and the locally correlated interactions by ultrafast structural dynamics will inspire broad interest in the construction of structure-property relationships in material science.
Collapse
Affiliation(s)
- Jingjun Li
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingpeng Qi
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Luye Yue
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changyuan Yao
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijing Chen
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Dao Xiang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai, 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianming Cao
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Physics Department and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| |
Collapse
|
2
|
Siddiqui KM, Durham DB, Cropp F, Ji F, Paiagua S, Ophus C, Andresen NC, Jin L, Wu J, Wang S, Zhang X, You W, Murnane M, Centurion M, Wang X, Slaughter DS, Kaindl RA, Musumeci P, Minor AM, Filippetto D. Relativistic ultrafast electron diffraction at high repetition rates. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:064302. [PMID: 38058995 PMCID: PMC10697722 DOI: 10.1063/4.0000203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The ability to resolve the dynamics of matter on its native temporal and spatial scales constitutes a key challenge and convergent theme across chemistry, biology, and materials science. The last couple of decades have witnessed ultrafast electron diffraction (UED) emerge as one of the forefront techniques with the sensitivity to resolve atomic motions. Increasingly sophisticated UED instruments are being developed that are aimed at increasing the beam brightness in order to observe structural signatures, but so far they have been limited to low average current beams. Here, we present the technical design and capabilities of the HiRES (High Repetition-rate Electron Scattering) instrument, which blends relativistic electrons and high repetition rates to achieve orders of magnitude improvement in average beam current compared to the existing state-of-the-art instruments. The setup utilizes a novel electron source to deliver femtosecond duration electron pulses at up to MHz repetition rates for UED experiments. Instrument response function of sub-500 fs is demonstrated with < 100 fs time resolution targeted in future. We provide example cases of diffraction measurements on solid-state and gas-phase samples, including both micro- and nanodiffraction (featuring 100 nm beam size) modes, which showcase the potential of the instrument for novel UED experiments.
Collapse
Affiliation(s)
- K. M. Siddiqui
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | - F. Ji
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - S. Paiagua
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - C. Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - N. C. Andresen
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L. Jin
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - J. Wu
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - S. Wang
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, USA
| | - X. Zhang
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - W. You
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - M. Murnane
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - M. Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - X. Wang
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - D. S. Slaughter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, USA
| | | | - P. Musumeci
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | - D. Filippetto
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Jiang K, Li S, Chen F, Zhu L, Li W. Microstructure characterization, phase transition, and device application of phase-change memory materials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2252725. [PMID: 37745781 PMCID: PMC10512918 DOI: 10.1080/14686996.2023.2252725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Phase-change memory (PCM), recently developed as the storage-class memory in a computer system, is a new non-volatile memory technology. In addition, the applications of PCM in a non-von Neumann computing, such as neuromorphic computing and in-memory computing, are being investigated. Although PCM-based devices have been extensively studied, several concerns regarding the electrical, thermal, and structural dynamics of phase-change devices remain. In this article, aiming at PCM devices, a comprehensive review of PCM materials is provided, including the primary PCM device mechanics that underpin read and write operations, physics-based modeling initiatives and experimental characterization of the many features examined in nanoscale PCM devices. Finally, this review will propose a prognosis on a few unsolved challenges and highlight research areas of further investigation.
Collapse
Affiliation(s)
- Kai Jiang
- School of Arts and Sciences, Shanghai Dianji University, Shanghai, China
- Department of Physics, East China Normal University, Shanghai, China
| | - Shubing Li
- Department of Physics, East China Normal University, Shanghai, China
| | - Fangfang Chen
- School of Arts and Sciences, Shanghai Dianji University, Shanghai, China
| | - Liping Zhu
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Department of Physics, Fudan University, Shanghai, China
| | - Wenwu Li
- Department of Physics, East China Normal University, Shanghai, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Chen L, Wang L, Jiang K, Zhang J, Li Y, Shang L, Zhu L, Gong S, Hu Z. Optically Induced Multistage Phase Transition in Coherent Phonon-Dominated a-GeTe. J Phys Chem Lett 2023:5760-5767. [PMID: 37326517 DOI: 10.1021/acs.jpclett.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ultrafast photoexcitation can decouple the multilevel nonequilibrium dynamics of electron-lattice interactions, providing an ideal probe for dissecting photoinduced phase transition in solids. Here, real-time time-dependent density functional theory simulations combined with occupation-constrained DFT methods are employed to explore the nonadiabatic paths of optically excited a-GeTe. Results show that the short-wavelength ultrafast laser is capable of generating full-domain carrier excitation and repopulation, whereas the long-wavelength ultrafast laser favors the excitation of lone pair electrons in the antibonded state. Photodoping makes the double-valley potential energy surface shallower and allows the insertion of A1g coherent forces in the atomic pairs, by which the phase reversal of Ge and Te atoms in the ⟨001⟩ direction is activated with ultrafast suppression of the Peierls distortion. These findings have far-reaching implications regarding nonequilibrium phase engineering strategies based on phase-change materials.
Collapse
Affiliation(s)
- Li Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Lin Wang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Kai Jiang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jinzhong Zhang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yawei Li
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Liyan Shang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Liangqing Zhu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Shijing Gong
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|