Li G, Li M, Zhou X, Gao HJ. Toward large-scale, ordered and tunable Majorana-zero-modes lattice on iron-based superconductors.
REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023;
87:016501. [PMID:
37963402 DOI:
10.1088/1361-6633/ad0c5c]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Majorana excitations are the quasiparticle analog of Majorana fermions in solid materials. Typical examples are the Majorana zero modes (MZMs) and the dispersing Majorana modes. When probed by scanning tunneling spectroscopy, the former manifest as a pronounced conductance peak locating precisely at zero-energy, while the latter behaves as constant or slowly varying density of states. The MZMs obey non-abelian statistics and are believed to be building blocks for topological quantum computing, which is highly immune to the environmental noise. Existing MZM platforms include hybrid structures such as topological insulator, semiconducting nanowire or 1D atomic chains on top of a conventional superconductor, and single materials such as the iron-based superconductors (IBSs) and 4Hb-TaS2. Very recently, ordered and tunable MZM lattice has also been realized in IBS LiFeAs, providing a scalable and applicable platform for future topological quantum computation. In this review, we present an overview of the recent local probe studies on MZMs. Classified by the material platforms, we start with the MZMs in the iron-chalcogenide superconductors where FeTe0.55Se0.45and (Li0.84Fe0.16)OHFeSe will be discussed. We then review the Majorana research in the iron-pnictide superconductors as well as other platforms beyond the IBSs. We further review recent works on ordered and tunable MZM lattice, showing that strain is a feasible tool to tune the topological superconductivity. Finally, we give our summary and perspective on future Majorana research.
Collapse