Yu X, Zhao X, Li L, Hu XM, Duan X, Yuan H, Zhang C. Toward Heisenberg scaling in non-Hermitian metrology at the quantum regime.
SCIENCE ADVANCES 2024;
10:eadk7616. [PMID:
38728399 PMCID:
PMC11086624 DOI:
10.1126/sciadv.adk7616]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
Non-Hermitian quantum metrology, an emerging field at the intersection of quantum estimation and non-Hermitian physics, holds promise for revolutionizing precision measurement. Here, we present a comprehensive investigation of non-Hermitian quantum parameter estimation in the quantum regime, with a special focus on achieving Heisenberg scaling. We introduce a concise expression for the quantum Fisher information (QFI) that applies to general non-Hermitian Hamiltonians, enabling the analysis of estimation precision in these systems. Our findings unveil the remarkable potential of non-Hermitian systems to attain the Heisenberg scaling of 1/t, where t represents time. Moreover, we derive optimal measurement conditions based on the proposed QFI expression, demonstrating the attainment of the quantum Cramér-Rao bound. By constructing non-unitary evolutions governed by two non-Hermitian Hamiltonians, one with parity-time symmetry and the other without specific symmetries, we experimentally validate our theoretical analysis. The experimental results affirm the realization of Heisenberg scaling in estimation precision, marking a substantial milestone in non-Hermitian quantum metrology.
Collapse