1
|
Lewis-Swan RJ, Castro JCZ, Barberena D, Rey AM. Exploiting Nonclassical Motion of a Trapped Ion Crystal for Quantum-Enhanced Metrology of Global and Differential Spin Rotations. PHYSICAL REVIEW LETTERS 2024; 132:163601. [PMID: 38701452 DOI: 10.1103/physrevlett.132.163601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
We theoretically investigate prospects for the creation of nonclassical spin states in trapped ion arrays by coupling to a squeezed state of the collective motion of the ions. The correlations of the generated spin states can be tailored for quantum-enhanced sensing of global or differential rotations of subensembles of the spins by working with specific vibrational modes of the ion array. We propose a pair of protocols to utilize the generated states and demonstrate their viability even for small systems, while assessing limitations imposed by spin-motion entanglement and technical noise. Our work suggests new opportunities for the preparation of many-body states with tailored correlations for quantum-enhanced metrology in spin-boson systems.
Collapse
Affiliation(s)
- R J Lewis-Swan
- Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA
- Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | - J C Zuñiga Castro
- Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA
- Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | - D Barberena
- JILA, NIST, and Department of Physics, University of Colorado, Boulder, Colorado, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado, USA
| | - A M Rey
- JILA, NIST, and Department of Physics, University of Colorado, Boulder, Colorado, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
2
|
Sundar B, Barberena D, Rey AM, Orioli AP. Squeezing Multilevel Atoms in Dark States via Cavity Superradiance. PHYSICAL REVIEW LETTERS 2024; 132:033601. [PMID: 38307070 DOI: 10.1103/physrevlett.132.033601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/13/2023] [Accepted: 09/19/2023] [Indexed: 02/04/2024]
Abstract
We describe a method to create and store scalable and long-lived entangled spin-squeezed states within a manifold of many-body cavity dark states using collective emission of light from multilevel atoms inside an optical cavity. We show that the system can be tuned to generate squeezing in a dark state where it will be immune to superradiance. We also show more generically that squeezing can be generated using a combination of superradiance and coherent driving in a bright state, and subsequently be transferred via single-particle rotations to a dark state where squeezing can be stored. Our findings, readily testable in current optical cavity experiments with alkaline-earth-like atoms, can open a path for dissipative generation and storage of metrologically useful states in optical transitions.
Collapse
Affiliation(s)
- Bhuvanesh Sundar
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Diego Barberena
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Asier Piñeiro Orioli
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
3
|
Bilitewski T, Rey AM. Manipulating Growth and Propagation of Correlations in Dipolar Multilayers: From Pair Production to Bosonic Kitaev Models. PHYSICAL REVIEW LETTERS 2023; 131:053001. [PMID: 37595247 DOI: 10.1103/physrevlett.131.053001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/14/2023] [Indexed: 08/20/2023]
Abstract
We study the nonequilibrium dynamics of dipoles confined in multiple stacked two-dimensional layers realizing a long-range interacting quantum spin 1/2 XXX model. We demonstrate that strong in-plane interactions can protect a manifold of collective layer dynamics. This then allows us to map the many-body spin dynamics to bosonic models. In a bilayer configuration we show how to engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum optics, resulting in exponential production of entangled pairs and generation of metrologically useful entanglement from initially prepared product states. In multilayer configurations we engineer a bosonic variant of the Kitaev model displaying chiral propagation along the layer direction. Our study illustrates how the control over interactions, lattice geometry, and state preparation in interacting dipolar systems uniquely afforded by AMO platforms such as Rydberg and magnetic atoms, polar molecules, or trapped ions allows for the control over the temporal and spatial propagation of correlations for applications in quantum sensing and quantum simulation.
Collapse
Affiliation(s)
- Thomas Bilitewski
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|