1
|
Liu T, Qiu J, Xu L, Qin M, Wan L, Yu T, Liu Q, Huang L, Xiao S. Edge Detection Imaging by Quasi-Bound States in the Continuum. NANO LETTERS 2024; 24:14466-14474. [PMID: 39475118 DOI: 10.1021/acs.nanolett.4c04543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Optical metasurfaces have revolutionized analog computing and image processing at subwavelength scales with faster speed and lower power consumption. They typically involve spatial differentiation with an engineered angular dispersion. Quasi-bound states in the continuum (quasi-BICs) have emerged as powerful tools for customizing optical resonances. While quasi-BICs have been widely used with high Q-factors and enhanced field confinement, their potential in image processing remains unexplored. Here, we demonstrate edge detection imaging by leveraging quasi-BIC in an all-dielectric metasurface. This metasurface, composed of four nanodisks per unit cell, supports a polarization-independent quasi-BIC through structural perturbations, allowing simultaneously engineering Q-factor and angular dispersion. It can perform isotropic two-dimensional spatial differentiation, which is crucial for edge detection. We fabricate the metasurfaces and validate their efficient, high-quality edge detection under different polarizations. Our findings illuminate the mechanisms of edge detection with quasi-BIC metasurfaces, opening new avenues for ultracompact, low-power optical computing devices.
Collapse
Affiliation(s)
- Tingting Liu
- School of Information Engineering, Nanchang University, Nanchang 330031, China
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Jumin Qiu
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Lei Xu
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Meibao Qin
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
- School of Education, Nanchang Institute of Science and Technology, Nanchang 330108, China
| | - Lipeng Wan
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Tianbao Yu
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Qiegen Liu
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Lujun Huang
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Shuyuan Xiao
- School of Information Engineering, Nanchang University, Nanchang 330031, China
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Xu ST, Fan J, Xue Z, Li J, Wang YH, Pan Y, Cao HZ, Ma RD, Lu D, Zhang HF, Cong L. Terahertz polarization conversion and asymmetric transmission based on a liquid crystal integrated EIT metasurface. OPTICS LETTERS 2024; 49:4891-4894. [PMID: 39207990 DOI: 10.1364/ol.537007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
We experimentally demonstrate a liquid crystal (LC)-integrated EIT metasurface for active THz polarization conversion and asymmetric transmission. By controlling the LC orientation under static magnetic field anchoring and an adjustable electric field, the device realizes the active control from the OFF state to the ON state, corresponding to the orthogonal polarization excitation modes of the EIT metasurface. Furthermore, based on the different polarization responses at forward and backward incidences, we achieve asymmetric transmission at the EIT peak and two nearby resonances, with its isolation actively manipulated by the external electric field. This study on dynamic polarization conversion and asymmetric transmission by a LC-integrated metasurface offers a promising route for active THz devices, applicable to THz communication, switching, and sensing systems.
Collapse
|
3
|
Chen W, Wang Z, Gorkunov MV, Qin J, Wang R, Wang C, Wu D, Chu J, Wang X, Kivshar Y, Chen Y. Uncovering Maximum Chirality in Resonant Nanostructures. NANO LETTERS 2024; 24:9643-9649. [PMID: 39041646 DOI: 10.1021/acs.nanolett.4c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Chiral nanostructures allow engineering of chiroptical responses; however, their design usually relies on empirical approaches and extensive numerical simulations. It remains unclear if a general strategy exists to enhance and maximize the intrinsic chirality of subwavelength photonic structures. Here, we suggest a microscopic theory and uncover the origin of strong chiral responses of resonant nanostructures. We reveal that the reactive helicity density is critically important for achieving maximum chirality at resonances. We demonstrate our general concept on the examples of planar photonic crystal slabs and metasurfaces, where out-of-plane mirror symmetry is broken by a bilayer design. Our findings provide a general recipe for designing photonic structures with maximum chirality, paving the way toward many applications, including chiral sensing, chiral emitters and detectors, and chiral quantum optics.
Collapse
Affiliation(s)
- Weijin Chen
- Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230027 Hefei, China
- Department of Electrical and Computer Engineering, National University of Singapore, 117583 Singapore, Singapore
| | - Zhenyu Wang
- Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230027 Hefei, China
| | - Maxim V Gorkunov
- Shubnikov Institute of Crystallography, NRC "Kurchatov Institute", 119333 Moscow, Russia
- National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Jiazheng Qin
- Department of Electrical and Computer Engineering, National University of Singapore, 117583 Singapore, Singapore
| | - Ruize Wang
- Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230027 Hefei, China
| | - Chaowei Wang
- Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230027 Hefei, China
| | - Dong Wu
- Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230027 Hefei, China
| | - Jiaru Chu
- Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230027 Hefei, China
| | - Xuehua Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yang Chen
- Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230027 Hefei, China
| |
Collapse
|
4
|
Wang J, Li Z, Guan Z, Zhang S, Li G, Zheng G. Upper limit on the polarization-assisted amplitude modulation capability of cascaded single-cell wave-plate-like metasurfaces. OPTICS EXPRESS 2024; 32:28611-28621. [PMID: 39538674 DOI: 10.1364/oe.529141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/14/2024] [Indexed: 11/16/2024]
Abstract
The Jones matrix method offers a robust framework for designing polarization multiplexed metasurfaces (PMMs). Traditional PMMs design involves initially defining functions and working channels, then mapping feature functions to adjustable parameters of metasurfaces. However, this approach makes it difficult to predict how working channels affect metasurface features. Here, we employ the generalized Malus law and Rodriguez rotation matrix on the Poincare Sphere to analyze diverse working channels' impact on PMMs' amplitude modulation capacity. For single-celled waveplate-like PMMs, up to three distinct images can be displayed. We demonstrate this in both theoretic method and numerical simulations. Our study establishes a framework for multi-channel amplitude modulation design of metasurfaces, applicable in information encryption, optical computation, diffraction neural networks, etc.
Collapse
|
5
|
Monti A, Vellucci S, Barbuto M, Stefanini L, Ramaccia D, Toscano A, Bilotti F. Design of reconfigurable Huygens metasurfaces based on Drude-like scatterers operating in the epsilon-negative regime. OPTICS EXPRESS 2024; 32:28429-28440. [PMID: 39538660 DOI: 10.1364/oe.526048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 11/16/2024]
Abstract
In this study, we investigate the feasibility of designing reconfigurable transmitting metasurfaces through the use of Drude-like scatterers with purely electric response. Theoretical and numerical analyses are provided to demonstrate that the response of spherical Drude-like scatterers can be tailored to achieve complete transmission, satisfying a generalized Kerker's condition at half of their plasma frequency. This phenomenon, which arises from the co-excitation of the electric dipole and the electric quadrupole within the scatterer, also exhibits moderate broadband performance. Subsequently, we present the application of these particles as meta-atoms in the design of reconfigurable multipolar Huygens metasurfaces, outlining the technical prerequisites for achieving effective beam-steering capabilities. Finally, we explore a plausible implementation of these low-loss Drude-like scatterers at microwave frequencies using plasma discharges. Our findings propose an alternative avenue for Huygens metasurface designs, distinct from established approaches relying on dipolar meta-atoms or on core-shell geometries. Unlike these conventional methods, our approach fosters seamless integration of reconfigurability strategies in beam-steering devices.
Collapse
|
6
|
Wang C, Wang R, Cheng X, Hu X, Wang C. Passively Broadband Tunable Dual Circular Dichroism via Bound States in the Continuum in Topological Chiral Metasurface. ACS NANO 2024; 18:18922-18932. [PMID: 38990704 DOI: 10.1021/acsnano.4c01697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Dynamic control for a strong circular dichroism (CD) response is essential in engineering applications such as polarization manipulation, sensing, and imaging. Here, we propose and experimentally demonstrate a broadband tunable dual CD response via bound states in the continuum (BICs) in two-dimensional topologically protected metasurfaces composed of all-dielectric Si chiral grating structures that generate a pair of mixed and degenerated BIC mode and circular dichroic mode (CDM) as an additional degree of freedom in CD manipulation. It is found that a singular CD peak of nearly 100% at 1.6 μm can be achieved by CDM when BIC is hidden under normal incidence, while the CD peak can be split into two in which peak wavelengths can be precisely and linearly tuned over a bandwidth of 180 nm by the incident angle when the BIC mode is excited under oblique incidence. Additionally, dynamic modulation of output polarization states from linear to circular can be arbitrarily achieved at the split CD peaks by controlling the incident angle when asymmetry perturbations on chiral gratings are introduced due to the decoupling of various polarization states at Γ point by BIC to different positions in K space. The proposed chiral grating metasurface exhibits unique angle-sensitive tunable CD spectral characteristics, making it ideal for hyperspectral and spin-selective wavefront shaping, and holds significant promise in various applications such as optical security, angle sensors, chiral lasers, nonlinear filters, and other active chiral optical devices.
Collapse
Affiliation(s)
- Chenqian Wang
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Rui Wang
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Xiguo Cheng
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Xin Hu
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Chinhua Wang
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| |
Collapse
|
7
|
Liang C, Huang T, Li Z, Guan Z, Li G, Zhang S, Zheng G. Minimalist design of multifunctional metasurfaces for helicity multiplexed holography and nanoprinting. OPTICS EXPRESS 2024; 32:26359-26373. [PMID: 39538504 DOI: 10.1364/oe.530173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 11/16/2024]
Abstract
Recently, polarization multiplexing has become a common strategy to enhance the information capacity of metasurfaces. Nevertheless, the intricate design of anisotropic nanostructures forming a polarization multiplexed metasurface poses a significant challenge, increasing the requirements for manufacturing processes and diminishing overall robustness. Herein, we present a minimalist metasurface comprised of only two kinds of nanostructures to achieve the integration of continuous-amplitude modulated nanoprinting and eight-step phase-only helicity-multiplexed holography. Specifically, the nanoprinting image governed by Malus's law can be observed in the orthogonally polarized light path, while holographic images can be switched by changing the chirality of the incident circularly polarized light. More importantly, the geometric phase and the propagation phase of the metasurface are optimized simultaneously according to the target images. Thus, the metasurface does not require optimizing many kinds of nanostructures to achieve the phase but only needs two kinds of nanostructures, forming a minimalist metasurface that significantly relieves the design and fabrication burden. Moreover, the proposed methodology is universal and applicable not only in polarization multiplexing but also in other multi-channel multiplexing technologies. Consequently, the proposed scheme holds promising applications in image display, information encryption, data storage, anti-counterfeiting, and more.
Collapse
|
8
|
Liu L, Liu W, Wang F, Peng X, Choi DY, Cheng H, Cai Y, Chen S. Ultra-robust informational metasurfaces based on spatial coherence structures engineering. LIGHT, SCIENCE & APPLICATIONS 2024; 13:131. [PMID: 38834550 DOI: 10.1038/s41377-024-01485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Optical information transmission is vital in modern optics and photonics due to its concurrent and multi-dimensional nature, leading to tremendous applications such as optical microscopy, holography, and optical sensing. Conventional optical information transmission technologies suffer from bulky optical setup and information loss/crosstalk when meeting scatterers or obstacles in the light path. Here, we theoretically propose and experimentally realize the simultaneous manipulation of the coherence lengths and coherence structures of the light beams with the disordered metasurfaces. The ultra-robust optical information transmission and self-reconstruction can be realized by the generated partially coherent beam with modulated coherence structure even 93% of light is recklessly obstructed during light transmission, which brings new light to robust optical information transmission with a single metasurface. Our method provides a generic principle for the generalized coherence manipulation on the photonic platform and displays a variety of functionalities advancing capabilities in optical information transmission such as meta-holography and imaging in disordered and perturbative media.
Collapse
Affiliation(s)
- Leixin Liu
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Collaborative Innovation Center of Light Manipulation and Applications, Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Wenwei Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300071, China.
| | - Fei Wang
- School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xiaofeng Peng
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Collaborative Innovation Center of Light Manipulation and Applications, Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Duk-Yong Choi
- Laser Physics Centre, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Hua Cheng
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300071, China
| | - Yangjian Cai
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Collaborative Innovation Center of Light Manipulation and Applications, Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Shuqi Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300071, China.
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
9
|
Wen S, Xue X, Wang S, Ni Y, Sun L, Yang Y. Metasurface array for single-shot spectroscopic ellipsometry. LIGHT, SCIENCE & APPLICATIONS 2024; 13:88. [PMID: 38600108 PMCID: PMC11006928 DOI: 10.1038/s41377-024-01396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 04/12/2024]
Abstract
Spectroscopic ellipsometry is a potent method that is widely adopted for the measurement of thin film thickness and refractive index. Most conventional ellipsometers utilize mechanically rotating polarizers and grating-based spectrometers for spectropolarimetric detection. Here, we demonstrated a compact metasurface array-based spectroscopic ellipsometry system that allows single-shot spectropolarimetric detection and accurate determination of thin film properties without any mechanical movement. The silicon-based metasurface array with a highly anisotropic and diverse spectral response is combined with iterative optimization to reconstruct the full Stokes polarization spectrum of the light reflected by the thin film with high fidelity. Subsequently, the film thickness and refractive index can be determined by fitting the measurement results to a proper material model with high accuracy. Our approach opens up a new pathway towards a compact and robust spectroscopic ellipsometry system for the high throughput measurement of thin film properties.
Collapse
Affiliation(s)
- Shun Wen
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Xinyuan Xue
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Shuai Wang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Yibo Ni
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Liqun Sun
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Yuanmu Yang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Deng ZL, Hu MX, Qiu S, Wu X, Overvig A, Li X, Alù A. Poincaré sphere trajectory encoding metasurfaces based on generalized Malus' law. Nat Commun 2024; 15:2380. [PMID: 38493161 PMCID: PMC10944530 DOI: 10.1038/s41467-024-46758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
As a fundamental property of light, polarization serves as an excellent information encoding carrier, playing significant roles in many optical applications, including liquid crystal displays, polarization imaging, optical computation and encryption. However, conventional polarization information encoding schemes based on Malus' law usually consider 1D polarization projections on a linear basis, implying that their encoding flexibility is largely limited. Here, we propose a Poincaré sphere (PS) trajectory encoding approach with metasurfaces that leverages a generalized form of Malus' law governing universal 2D projections between arbitrary elliptical polarization pairs spanning the entire PS. Arbitrary polarization encodings are realized by engineering PS trajectories governed by either arbitrary analytic functions or aligned modulation grids of interest, leading to versatile polarization image transformation functionalities, including histogram stretching, thresholding and image encryption within non-orthogonal PS loci. Our work significantly expands the encoding dimensionality of polarization information, unveiling new opportunities for metasurfaces in polarization optics for both quantum and classical regimes.
Collapse
Affiliation(s)
- Zi-Lan Deng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| | - Meng-Xia Hu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | | | | | - Adam Overvig
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
11
|
Deng M, Cotrufo M, Wang J, Dong J, Ruan Z, Alù A, Chen L. Broadband angular spectrum differentiation using dielectric metasurfaces. Nat Commun 2024; 15:2237. [PMID: 38472224 DOI: 10.1038/s41467-024-46537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Signal processing is of critical importance for various science and technology fields. Analog optical processing can provide an effective solution to perform large-scale and real-time data processing, superior to its digital counterparts, which have the disadvantages of low operation speed and large energy consumption. As an important branch of modern optics, Fourier optics exhibits great potential for analog optical image processing, for instance for edge detection. While these operations have been commonly explored to manipulate the spatial content of an image, mathematical operations that act directly over the angular spectrum of an image have not been pursued. Here, we demonstrate manipulation of the angular spectrum of an image, and in particular its differentiation, using dielectric metasurfaces operating across the whole visible spectrum. We experimentally show that this technique can be used to enhance desired portions of the angular spectrum of an image. Our approach can be extended to develop more general angular spectrum analog meta-processors, and may open opportunities for optical analog data processing and biological imaging.
Collapse
Affiliation(s)
- Ming Deng
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Michele Cotrufo
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- The Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianji Dong
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhichao Ruan
- School of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
| | - Lin Chen
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
12
|
Ki YG, Jeon BJ, Song IH, Kim SJ, Jeon S, Kim SJ. Realizing Minimally Perturbed, Nonlocal Chiral Metasurfaces for Direct Stokes Parameter Detection. ACS NANO 2024; 18:7064-7073. [PMID: 38373394 PMCID: PMC10919284 DOI: 10.1021/acsnano.3c10749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Recent development in nonlocal resonance based chiral metasurfaces draws great attention due to their abilities to strongly interact with circularly polarized light at a relatively narrow spectral bandwidth. However, there still remain challenges in realizing effective nonlocal chiral metasurfaces in optical frequency due to demanding fabrications such as 3D-multilayered or nanoscaled chiral geometry, which, in particular, limit their applications to polarimetric detection with high-Q spectra. Here, we study the underlying working principles and reveal the important role of the interaction between high-Q nonlocal resonance and low-Q localized Mie resonance in realizing effective nonlocal chiral metasurfaces. Based on the working principles, we demonstrate one of the simplest types of nonlocal chiral metasurfaces which directly detects a set of Stokes parameters without the numerical combination of transmitted values presented from typical Stokes metasurfaces. This is achieved by minimally altering the geometry and filling ratio of every constituent nanostructure in a unit cell, facilitating consistent-sized nanolithography for all samples experimentally at a targeted wavelength with relatively high-Q spectra. This work provides an alternative design rule to realizing effective polarimetric metasurfaces and the potential applications of nonlocal Stokes parameters detection.
Collapse
Affiliation(s)
- Yu Geun Ki
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Byeong Je Jeon
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Il Hoon Song
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seong Jun Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sangtae Jeon
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soo Jin Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
13
|
Peng C, Huang T, Chen C, Liu H, Liang X, Li Z, Yu S, Zheng G. Switchable Two-Dimensional AND and Exclusive OR Operation Based on Dual-Wavelength Metasurfaces. ACS NANO 2024; 18:4424-4431. [PMID: 38276787 DOI: 10.1021/acsnano.3c10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Logic operation serves as the foundation and core element of computing networks; it will bring huge vitality to advanced information processing with its adaptation in the optical domain. As fundamental logic operations, AND and exclusive OR (XOR) operations serve a multitude of purposes, such as their ability to cooperate in enabling image processing and interpretation. Here, we propose and experimentally demonstrate a wavelength multiplexed AND and XOR function based on metasurfaces. By combining two cosine gratings with distinct frequencies and an initial phase difference of π/2, we extract the similarities and differences between two input images simultaneously by illuminating them with 445 and 633 nm wavelengths. Additionally, we explore its potential in information encryption, where overall security is enhanced by distributing distinct parts of initial information and encoded keys to different receivers. This design possesses the benefits of convenient mode switching and high-quality imaging, facilitating advanced applications in pattern recognition, machine vision, medical diagnosis, etc.
Collapse
Affiliation(s)
- Chang Peng
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Tian Huang
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Chen Chen
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Hongchao Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, Macau, 999078, China
| | - Xiao Liang
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Zile Li
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Shaohua Yu
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Guoxing Zheng
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
14
|
Dai C, Wan S, Li Z, Shi Y, Zhang S, Li Z. Switchable unidirectional emissions from hydrogel gratings with integrated carbon quantum dots. Nat Commun 2024; 15:845. [PMID: 38287059 PMCID: PMC10825124 DOI: 10.1038/s41467-024-45284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
Directional emission of photoluminescence despite its incoherence is an attractive technique for light-emitting fields and nanophotonics. Optical metasurfaces provide a promising route for wavefront engineering at the subwavelength scale, enabling the feasibility of unidirectional emission. However, current directional emission strategies are mostly based on static metasurfaces, and it remains a challenge to achieve unidirectional emissions tuning with high performance. Here, we demonstrate quantum dots-hydrogel integrated gratings for actively switchable unidirectional emission with simultaneously a narrow divergence angle less than 1.5° and a large diffraction angle greater than 45°. We further demonstrate that the grating efficiency alteration leads to a more than 7-fold tuning of emission intensity at diffraction order due to the variation of hydrogel morphology subject to change in ambient humidity. Our proposed switchable emission strategy can promote technologies of active light-emitting devices for radiation control and optical imaging.
Collapse
Affiliation(s)
- Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Shuai Wan
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Zhe Li
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Yangyang Shi
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Shuang Zhang
- Department of Physics, The University of Hong Kong, Hong Kong, 999077, China.
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan, 430072, China.
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China.
- School of Microelectronics, Wuhan University, Wuhan, 430072, China.
- Suzhou Institute of Wuhan University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Wang S, Li L, Wen S, Liang R, Liu Y, Zhao F, Yang Y. Metalens for Accelerated Optoelectronic Edge Detection under Ambient Illumination. NANO LETTERS 2024; 24:356-361. [PMID: 38109180 DOI: 10.1021/acs.nanolett.3c04112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Analog systems may allow image processing, such as edge detection, with low computational power. However, most demonstrated analog systems, based on either conventional 4-f imaging systems or nanophotonic structures, rely on coherent laser sources for illumination, which significantly restricts their use in routine imaging tasks with ambient, incoherent illumination. Here, we demonstrated a metalens-assisted imaging system that can allow optoelectronic edge detection under ambient illumination conditions. The metalens was designed to generate polarization-dependent optical transfer functions (OTFs), resulting in a synthetic OTF with an isotropic high-pass frequency response after digital subtraction. We integrated the polarization-multiplexed metalens with a polarization camera and experimentally demonstrated single-shot edge detection of indoor and outdoor scenes, including a flying airplane, under ambient sunlight illumination. The proposed system showcased the potential of using polarization multiplexing for the construction of complex optical convolution kernels toward accelerated machine vision tasks such as object detection and classification under ambient illumination.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 26600, China
| | - Liu Li
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Shun Wen
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Ruiqi Liang
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yaxi Liu
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Feng Zhao
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yuanmu Yang
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Li L, Wang S, Zhao F, Zhang Y, Wen S, Chai H, Gao Y, Wang W, Cao L, Yang Y. Single-shot deterministic complex amplitude imaging with a single-layer metalens. SCIENCE ADVANCES 2024; 10:eadl0501. [PMID: 38181086 PMCID: PMC10776002 DOI: 10.1126/sciadv.adl0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
Conventional imaging systems can only capture light intensity. Meanwhile, the lost phase information may be critical for a variety of applications such as label-free microscopy and optical metrology. Existing phase retrieval techniques typically require a bulky setup, multiframe measurements, or prior information of the target scene. Here, we proposed an extremely compact system for complex amplitude imaging, leveraging the extreme versatility of a single-layer metalens to generate spatially multiplexed and polarization phase-shifted point spread functions. Combining the metalens with a polarization camera, the system can simultaneously record four polarization shearing interference patterns along both in-plane directions, thus allowing the deterministic reconstruction of the complex amplitude light field in a single shot. Using an incoherent light-emitting diode as the illumination, we experimentally demonstrated speckle-noise-free complex amplitude imaging for both static and moving objects with tailored magnification ratio and field of view. The miniaturized and robust system may open the door for complex amplitude imaging in portable devices for point-of-care applications.
Collapse
Affiliation(s)
| | | | - Feng Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yixin Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Shun Wen
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yunhui Gao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
17
|
Amboli J, Gallas B, Demésy G, Bonod N. Design and analysis of chiral and achiral metasurfaces with the finite element method. OPTICS EXPRESS 2023; 31:43147-43162. [PMID: 38178416 DOI: 10.1364/oe.500540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024]
Abstract
The rise of metasurfaces to manipulate the polarization states of light motivates the development of versatile numerical methods able to model and analyze their polarimetric properties. Here we make use of a scattered-field formulation well suited to the Finite Element Method (FEM) to compute the Stokes-Mueller matrix of metasurfaces. The major advantage of the FEM lies in its versatility and its ability to compute the optical properties of structures with arbitrary and realistic shapes, and rounded edges and corners. We benefit from this method to design achiral, pseudo-chiral, and chiral metasurfaces with specific polarimetric properties. We compute and analyze their Mueller matrices. The accuracy of this method is assessed for both dielectric and metallic scatterers hosting Mie and plasmonic resonances.
Collapse
|
18
|
Zhong H, He T, Meng Y, Xiao Q. Photonic Bound States in the Continuum in Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7112. [PMID: 38005042 PMCID: PMC10672634 DOI: 10.3390/ma16227112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Bound states in the continuum (BIC) have garnered considerable attention recently for their unique capacity to confine electromagnetic waves within an open or non-Hermitian system. Utilizing a variety of light confinement mechanisms, nanostructures can achieve ultra-high quality factors and intense field localization with BIC, offering advantages such as long-living resonance modes, adaptable light control, and enhanced light-matter interactions, paving the way for innovative developments in photonics. This review outlines novel functionality and performance enhancements by synergizing optical BIC with diverse nanostructures, delivering an in-depth analysis of BIC designs in gratings, photonic crystals, waveguides, and metasurfaces. Additionally, we showcase the latest advancements of BIC in 2D material platforms and suggest potential trajectories for future research.
Collapse
Affiliation(s)
| | | | | | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China; (H.Z.); (T.H.); (Y.M.)
| |
Collapse
|
19
|
Gu M, Zhang R, Cheng C, Dong Q, Zeng X, Zhang Y, Zhan Z, Liu C, Cheng C. Metasurfaces for generating higher-order Poincaré beams by polarization-selective focusing and overall elimination of co-polarization components. OPTICS EXPRESS 2023; 31:38921-38938. [PMID: 38017983 DOI: 10.1364/oe.503678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 11/30/2023]
Abstract
Focused higher-order Poincaré (HOP) beams are of particular interest because they facilitate understanding the exotic properties of structured light and their applications in classical physics and quantum information. However, generating focused HOP beams using metasurfaces is challenging. In this study, we proposed a metasurface design comprising two sets of metal nanoslits for generating coaxially focused HOP beams. The nanoslits were interleaved on equispaced alternating rings. The initial rings started at the two adjacent Fresnel zones to provide opposite propagation phases for overall elimination of the co-polarization components. With the designed hyperbolic and helical profiles of the geometric phases, the two vortices of the opposite cross-circular-polarizations were formed and selectively focused, realizing HOP beams of improved quality. Simulations and experimental results demonstrated the feasibility of the proposed metasurface design. This study is of significance in the integration of miniaturized optical devices and enriches the application areas of metasurfaces.
Collapse
|
20
|
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, Bae SH. Functionalizing nanophotonic structures with 2D van der Waals materials. NANOSCALE HORIZONS 2023; 8:1345-1365. [PMID: 37608742 DOI: 10.1039/d3nh00246b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongkun Zhong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Sunok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Seoungwoong Park
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yijie Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Optoelectronics Research Centre, University of Southampton, Southampton, UK
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
21
|
Qu J, Wang Z, Cehng Z, Wang Y, Yu C. Full-Stokes parameters detection enabled by a non-interleaved fiber-compatible metasurface. OPTICS EXPRESS 2023; 31:20836-20849. [PMID: 37381198 DOI: 10.1364/oe.491836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/20/2023] [Indexed: 06/30/2023]
Abstract
Polarization of the optical field determines the way of light-matter interaction, which lays the foundation for various applications such as chiral spectroscopy, biomedical imaging, and machine vision. Currently, with the rise of the metasurface, miniaturized polarization detectors have attracted extensive interest. However, due to the limitation of the working area, it is still a challenge to integrate polarization detectors on the fiber end face. Here, we propose a design of compact non-interleaved metasurface that can be integrated on the tip of a large-mode-area photonic crystal fiber (LMA-PCF) to realize full-Stokes parameters detection. Through concurrent control over the dynamic phase and Pancharatnam-Berry (PB) phase, different helical phases are assigned to the two orthogonal circular polarization bases, of which the amplitude contrast and relative phase difference can be represented by two non-overlapped foci and an interference ring pattern, respectively. Therefore, the determination of arbitrary polarization states through the proposed ultracompact fiber-compatible metasurface can be achieved. Moreover, we calculated full-Stokes parameters according to simulation results and obtained that the average detection deviation is relatively low at 2.84% for 20 elucidated samples. The novel metasurface exhibits excellent polarization detection performance and overcomes the limitation of the small integrated area, which provides insights into the further practical explorations of ultracompact polarization detection devices.
Collapse
|
22
|
Farrahi T, Giakos GK. Next-Generation Reconfigurable Nanoantennas and Polarization of Light. MICROMACHINES 2023; 14:1132. [PMID: 37374717 DOI: 10.3390/mi14061132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
This study is aimed at the design, calibration, and development of a near-infrared (NIR) liquid crystal multifunctional automated optical polarimeter, which is aimed at the study and characterization of the polarimetric properties of polymer optical nanofilms. The characterization of these novel nanophotonic structures has been achieved, in terms of Mueller matrix and Stokes parameter analyses. The nanophotonic structures of this study consisted of (a) a matrix consisting of two different polymer domains, namely polybutadiene (PB) and polystyrene (PS), functionalized with gold nanoparticles; (b) cast and annealed Poly (styrene-b-methyl methacrylate) (PS-PMMA) diblock copolymers; (c) a matrix of a block copolymer (BCP) domain, PS-b-PMMA or Poly (styrene-block-methy methacrylate), functionalized with gold nanoparticles; and (d) different thicknesses of PS-b-P2VP diblock copolymer functionalized with gold nanoparticles. In all cases, backscattered infrared light was studied and related to the polarization figures-of-merit (FOM). The outcome of this study indicates that functionalized polymer nanomaterials, depending upon their structure and composition, exhibit promising optical characteristics, modulating and manipulating the polarimetric properties of light. The fabrication of technologically useful, tunable, conjugated polymer blends with an optimized refractive index, shape, size, spatial orientation, and arrangement would lead to the development of new nanoantennas and metasurfaces.
Collapse
Affiliation(s)
- Tannaz Farrahi
- Department of Physics, University of Colorado, Colorado, CO 80302, USA
| | - George K Giakos
- Department of Electrical and Computer Engineering, Manhattan College, New York, NY 10463, USA
| |
Collapse
|