1
|
Das S, Kunjam P, Ebeling JF, Barthelat F. Gradients of properties increase the morphing and stiffening performance of bioinspired synthetic fin rays. BIOINSPIRATION & BIOMIMETICS 2024; 19:046011. [PMID: 38722377 DOI: 10.1088/1748-3190/ad493c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
State-of-the-art morphing materials are either very compliant to achieve large shape changes (flexible metamaterials, compliant mechanisms, hydrogels), or very stiff but with infinitesimal changes in shape that require large actuation forces (metallic or composite panels with piezoelectric actuation). Morphing efficiency and structural stiffness are therefore mutually exclusive properties in current engineering morphing materials, which limits the range of their applicability. Interestingly, natural fish fins do not contain muscles, yet they can morph to large amplitudes with minimal muscular actuation forces from the base while producing large hydrodynamic forces without collapsing. This sophisticated mechanical response has already inspired several synthetic fin rays with various applications. However, most 'synthetic' fin rays have only considered uniform properties and structures along the rays while in natural fin rays, gradients of properties are prominent. In this study, we designed, modeled, fabricated and tested synthetic fin rays with bioinspired gradients of properties. The rays were composed of two hemitrichs made of a stiff polymer, joined by a much softer core region made of elastomeric ligaments. Using combinations of experiments and nonlinear mechanical models, we found that gradients in both the core region and hemitrichs can increase the morphing and stiffening response of individual rays. Introducing a positive gradient of ligament density in the core region (the density of ligament increases towards the tip of the ray) decreased the actuation force required for morphing and increased overall flexural stiffness. Introducing a gradient of property in the hemitrichs, by tapering them, produced morphing deformations that were distributed over long distances along the length of the ray. These new insights on the interplay between material architecture and properties in nonlinear regimes of deformation can improve the designs of morphing structures that combine high morphing efficiency and high stiffness from external forces, with potential applications in aerospace or robotics.
Collapse
Affiliation(s)
- Saurabh Das
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| | - Prashant Kunjam
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| | - Jona Faye Ebeling
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
- Department of Nature and Engineering, City University of Applied Sciences Bremen, Hermann-Köhl-Straße 1, 28199 Bremen, Germany
| | - Francois Barthelat
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| |
Collapse
|
2
|
Wang X, Jiang J, Chen J, Asilehan Z, Tang W, Peng C, Zhang R. Moiré effect enables versatile design of topological defects in nematic liquid crystals. Nat Commun 2024; 15:1655. [PMID: 38409234 PMCID: PMC10897219 DOI: 10.1038/s41467-024-45529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Recent advances in surface-patterning techniques of liquid crystals have enabled the precise creation of topological defects, which promise a variety of emergent applications. However, the manipulation and application of these defects remain limited. Here, we harness the moiré effect to engineer topological defects in patterned nematic liquid crystal cells. Specifically, we combine simulation and experiment to examine a nematic cell confined between two substrates of periodic surface anchoring patterns; by rotating one surface against the other, we observe a rich variety of highly tunable, novel topological defects. These defects are shown to guide the three-dimensional self-assembly of colloids, which can conversely impact defects by preventing the self-annihilation of loop-defects through jamming. Finally, we demonstrate that certain nematic moiré cells can engender arbitrary shapes represented by defect regions. As such, the proposed simple twist method enables the design and tuning of mesoscopic structures in liquid crystals, facilitating applications including defect-directed self-assembly, material transport, micro-reactors, photonic devices, and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jinghua Jiang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Juan Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN, 38152, USA
| | - Zhawure Asilehan
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wentao Tang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|