Song WL, Liu HB, Zhou B, Yang WL, An JH. Remote Charging and Degradation Suppression for the Quantum Battery.
PHYSICAL REVIEW LETTERS 2024;
132:090401. [PMID:
38489615 DOI:
10.1103/physrevlett.132.090401]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024]
Abstract
The quantum battery (QB) makes use of quantum effects to store and supply energy, which may outperform its classical counterpart. However, there are two challenges in this field. One is that the environment-induced decoherence causes the energy loss and aging of the QB, the other is that the decreasing of the charger-QB coupling strength with increasing their distance makes the charging of the QB become inefficient. Here, we propose a QB scheme to realize a remote charging via coupling the QB and the charger to a rectangular hollow metal waveguide. It is found that an ideal charging is realized as long as two bound states are formed in the energy spectrum of the total system consisting of the QB, the charger, and the electromagnetic environment in the waveguide. Using the constructive role of the decoherence, our QB is immune to the aging. Additionally, without resorting to the direct charger-QB interaction, our scheme works in a way of long-range and wireless-like charging. Effectively overcoming the two challenges, our result supplies an insightful guideline to the practical realization of the QB by reservoir engineering.
Collapse