1
|
Liu Y, Schmidt J, Liu Z, Leibrandt DR, Leibfried D, Chou CW. Quantum state tracking and control of a single molecular ion in a thermal environment. Science 2024; 385:790-795. [PMID: 39088652 DOI: 10.1126/science.ado1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
Understanding molecular state evolution is central to many disciplines, including molecular dynamics, precision measurement, and molecule-based quantum technology. Details of this evolution are obscured when observing a statistical ensemble of molecules. Here, we report real-time observations of thermal radiation-driven transitions between individual states ("jumps") of a single molecule. We reversed these jumps through microwave-driven transitions, which resulted in a 20-fold improvement in the time the molecule dwells in a chosen state. The measured transition rates showed anisotropy in the thermal environment, pointing to the possibility of using single molecules as in situ probes for the strengths of ambient fields. Our approaches for state detection and manipulation could apply to a wide range of species, facilitating their uses in fields including quantum science, molecular physics, and ion-neutral chemistry.
Collapse
Affiliation(s)
- Yu Liu
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Julian Schmidt
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Zhimin Liu
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - David R Leibrandt
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Dietrich Leibfried
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Chin-Wen Chou
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
2
|
Zhang ZY, Sun Z, Duan T, Ding YK, Huang X, Liu JM. Entanglement Generation of Polar Molecules via Deep Reinforcement Learning. J Chem Theory Comput 2024; 20:1811-1820. [PMID: 38320113 DOI: 10.1021/acs.jctc.3c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Polar molecules are a promising platform for achieving scalable quantum information processing because of their long-range electric dipole-dipole interactions. Here, we take the coupled ultracold CaF molecules in an external electric field with gradient as qubits and concentrate on the creation of intermolecular entanglement with the method of deep reinforcement learning (RL). After sufficient training episodes, the educated RL agents can discover optimal time-dependent control fields that steer the molecular systems from separate states to two-qubit and three-qubit entangled states with high fidelities. We analyze the fidelities and the negativities (characterizing entanglement) of the generated states as a function of training episodes. Moreover, we present the population dynamics of the molecular systems under the influence of control fields discovered by the agents. Compared with the schemes for creating molecular entangled states based on optimal control theory, some conditions (e.g., molecular spacing and electric field gradient) adopted in this work are more feasible in the experiment. Our results demonstrate the potential of machine learning to effectively solve quantum control problems in polar molecular systems.
Collapse
Affiliation(s)
- Zuo-Yuan Zhang
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China
| | - Tao Duan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an 710119, China
| | - Yi-Kai Ding
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xinning Huang
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jin-Ming Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Eduardus, Shagam Y, Landau A, Faraji S, Schwerdtfeger P, Borschevsky A, Pašteka LF. Large vibrationally induced parity violation effects in CHDBrI . Chem Commun (Camb) 2023; 59:14579-14582. [PMID: 37990542 DOI: 10.1039/d3cc03787h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The isotopically chiral molecular ion CHDBrI+ is identified as an exceptionally promising candidate for the detection of parity violation in vibrational transitions. The largest predicted parity-violating frequency shift reaches 1.8 Hz for the hydrogen wagging mode which has a sub-Hz natural line width and its vibrational frequency auspiciously lies in the available laser range. In stark contrast to this result, the parent neutral molecule is two orders of magnitude less sensitive to parity violation. The origin of this effect is analyzed and explained. Precision vibrational spectroscopy of CHDBrI+ is feasible as it is amenable to preparation at internally low temperatures and resistant to predissociation, promoting long interrogation times (Landau et al., J. Chem. Phys., 2023, 159, 114307). The intersection of these properties in this molecular ion places the first observation of parity violation in chiral molecules within reach.
Collapse
Affiliation(s)
- Eduardus
- Van Swinderen Institute for Particle Physics and Gravity (VSI), University of Groningen, Groningen, The Netherlands.
| | - Yuval Shagam
- Schulich Faculty of Chemistry, Solid State Institute and The Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Landau
- Schulich Faculty of Chemistry, Solid State Institute and The Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Anastasia Borschevsky
- Van Swinderen Institute for Particle Physics and Gravity (VSI), University of Groningen, Groningen, The Netherlands.
| | - Lukáš F Pašteka
- Van Swinderen Institute for Particle Physics and Gravity (VSI), University of Groningen, Groningen, The Netherlands.
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|