• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4637602)   Today's Articles (2034)   Subscriber (50132)
For: Talman JD. Minimax principle for the Dirac equation. Phys Rev Lett 1986;57:1091-1094. [PMID: 10034244 DOI: 10.1103/physrevlett.57.1091] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Number Cited by Other Article(s)
1
Zhao Z, Evangelista FA. Toward Accurate Spin-Orbit Splittings from Relativistic Multireference Electronic Structure Theory. J Phys Chem Lett 2024;15:7103-7110. [PMID: 38954768 PMCID: PMC11261625 DOI: 10.1021/acs.jpclett.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
2
Chuluunbaatar O, Joulakian B, Chuluunbaatar G, Buša J, Koshcheev G. Accurate calculations for the Dirac electron in the field of two-center Coulomb field: Application to heavy ions. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
3
Datta SN. A novel interpretation of min-max theorem and principle in relativistic quantum chemistry. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
4
Paquier J, Giner E, Toulouse J. Relativistic short-range exchange energy functionals beyond the local-density approximation. J Chem Phys 2020;152:214106. [DOI: 10.1063/5.0004926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
5
Liu W. Essentials of relativistic quantum chemistry. J Chem Phys 2020;152:180901. [DOI: 10.1063/5.0008432] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
6
Schnack-Petersen AK, Simmermacher M, Fasshauer E, Jensen HJA, Sauer SPA. The Second-Order-Polarization-Propagator-Approximation (SOPPA) in a four-component spinor basis. J Chem Phys 2020;152:134113. [DOI: 10.1063/5.0002389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
7
Hanasaki K, Takatsuka K. Relativistic theory of electron-nucleus-radiation coupled dynamics in molecules: Wavepacket approach. J Chem Phys 2019;151:084102. [DOI: 10.1063/1.5109272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
8
Paquier J, Toulouse J. Four-component relativistic range-separated density-functional theory: Short-range exchange local-density approximation. J Chem Phys 2018;149:174110. [DOI: 10.1063/1.5049773] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]  Open
9
Min-max and max-min principles for the solution of 2 + 1 Dirac fermion in magnetic field, graphene lattice and layered diatomic materials. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.12.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
10
Hedegård ED, Bast R, Kongsted J, Olsen JMH, Jensen HJA. Relativistic Polarizable Embedding. J Chem Theory Comput 2017;13:2870-2880. [DOI: 10.1021/acs.jctc.7b00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
11
Shee A, Visscher L, Saue T. Analytic one-electron properties at the 4-component relativistic coupled cluster level with inclusion of spin-orbit coupling. J Chem Phys 2016;145:184107. [DOI: 10.1063/1.4966643] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
12
Almoukhalalati A, Knecht S, Jensen HJA, Dyall KG, Saue T. Electron correlation within the relativistic no-pair approximation. J Chem Phys 2016;145:074104. [DOI: 10.1063/1.4959452] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]  Open
13
Brandt S, Pernpointner M. Calculation of the lowest electronic excitations of the alkaline earth metals using the relativistic polarization propagator. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
14
Bates JE, Shiozaki T. Fully relativistic complete active space self-consistent field for large molecules: Quasi-second-order minimax optimization. J Chem Phys 2015;142:044112. [DOI: 10.1063/1.4906344] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
15
Teodoro TQ, da Silva ABF, Haiduke RLA. Relativistic Prolapse-Free Gaussian Basis Set of Quadruple-ζ Quality: (aug-)RPF-4Z. I. The s- and p-Block Elements. J Chem Theory Comput 2014;10:3800-6. [DOI: 10.1021/ct500518n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
16
Autschbach J. Relativistic calculations of magnetic resonance parameters: background and some recent developments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014;372:20120489. [PMID: 24516182 DOI: 10.1098/rsta.2012.0489] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
17
Pernpointner M. The relativistic polarization propagator for the calculation of electronic excitations in heavy systems. J Chem Phys 2014;140:084108. [DOI: 10.1063/1.4865964] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
18
Teodoro TQ, Haiduke RLA. Accurate relativistic adapted gaussian basis sets for francium through ununoctium without variational prolapse and to be used with both uniform sphere and gaussian nucleus models. J Comput Chem 2013;34:2372-9. [DOI: 10.1002/jcc.23400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 11/10/2022]
19
Kelley MS, Shiozaki T. Large-scale Dirac–Fock–Breit method using density fitting and 2-spinor basis functions. J Chem Phys 2013;138:204113. [DOI: 10.1063/1.4807612] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]  Open
20
Fleig T. Invited review: Relativistic wave-function based electron correlation methods. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.06.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
21
Peng D, Reiher M. Exact decoupling of the relativistic Fock operator. Theor Chem Acc 2012. [DOI: 10.1007/s00214-011-1081-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
22
Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R. Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chem Rev 2011;112:108-81. [DOI: 10.1021/cr200137a] [Citation(s) in RCA: 470] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
23
Saue T. Relativistic Hamiltonians for chemistry: a primer. Chemphyschem 2011;12:3077-94. [PMID: 22076930 DOI: 10.1002/cphc.201100682] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Indexed: 11/06/2022]
24
Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations. Theor Chem Acc 2011. [DOI: 10.1007/s00214-010-0876-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
25
Liu W. Ideas of relativistic quantum chemistry. Mol Phys 2010. [DOI: 10.1080/00268971003781571] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
26
Four-Component Electronic Structure Methods. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-1-4020-9975-5_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
27
Sikkema J, Visscher L, Saue T, Iliaš M. The molecular mean-field approach for correlated relativistic calculations. J Chem Phys 2009;131:124116. [DOI: 10.1063/1.3239505] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
28
Thyssen J, Fleig T, Jensen HJA. A direct relativistic four-component multiconfiguration self-consistent-field method for molecules. J Chem Phys 2008;129:034109. [DOI: 10.1063/1.2943670] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
29
Yamamoto S, Tatewaki H, Watanabe Y. Gaussian-type function set without prolapse for the Dirac-Fock-Roothaan equation (II): 80Hg through 103Lr. J Chem Phys 2006;125:054106. [PMID: 16942202 DOI: 10.1063/1.2222362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
30
Haiduke RLA, Da Silva ABF. Accurate relativistic adapted Gaussian basis sets for Cesium through Radon without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models. J Comput Chem 2006;27:1970-9. [PMID: 17031899 DOI: 10.1002/jcc.20500] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
31
Salek P, Helgaker T, Saue T. Linear response at the 4-component relativistic density-functional level: application to the frequency-dependent dipole polarizability of Hg, AuH and PtH2. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.10.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
32
Tatewaki H, Watanabe Y. Gaussian-type function set without prolapse 1H through 83Bi for the Dirac-Fock-Roothaan equation. J Chem Phys 2004;121:4528-33. [PMID: 15332882 DOI: 10.1063/1.1779213] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
33
Kullie O, Kolb D, Rutkowski A. Two-spinor fully relativistic finite-element (FEM) solution of the two-center Coulomb problem. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2003.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
34
Tatewaki H, Watanabe Y. Gaussian-type function set without prolapse for the Dirac-Fock-Roothaan equation. J Comput Chem 2003;24:1823-8. [PMID: 14515364 DOI: 10.1002/jcc.10330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
35
Saue T, Jensen HJA. Linear response at the 4-component relativistic level: Application to the frequency-dependent dipole polarizabilities of the coinage metal dimers. J Chem Phys 2003. [DOI: 10.1063/1.1522407] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
36
Saue T, Visscher L. Four-Component Electronic Structure Methods for Molecules. THEORETICAL CHEMISTRY AND PHYSICS OF HEAVY AND SUPERHEAVY ELEMENTS 2003. [DOI: 10.1007/978-94-017-0105-1_6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
37
Saue T, Helgaker T. Four-component relativistic Kohn-Sham theory. J Comput Chem 2002;23:814-23. [PMID: 12012358 DOI: 10.1002/jcc.10066] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
38
Visscher L. The Dirac equation in quantum chemistry: strategies to overcome the current computational problems. J Comput Chem 2002;23:759-66. [PMID: 12012352 DOI: 10.1002/jcc.10036] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
39
F˦gri K, Dyall KG. Chapter 5 Basis sets for relativistic calculations. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1380-7323(02)80031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
40
Chapter 7 Post Dirac-Hartree-Fock methods—properties. THEORETICAL AND COMPUTATIONAL CHEMISTRY 2002. [DOI: 10.1016/s1380-7323(02)80033-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
41
Dolbeault J, Esteban MJ, Séré E, Vanbreugel M. Minimization methods for the one-particle dirac equation. PHYSICAL REVIEW LETTERS 2000;85:4020-4023. [PMID: 11056614 DOI: 10.1103/physrevlett.85.4020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/1999] [Indexed: 05/23/2023]
42
Aucar GA, Saue T, Visscher L, Jensen HJA. On the origin and contribution of the diamagnetic term in four-component relativistic calculations of magnetic properties. J Chem Phys 1999. [DOI: 10.1063/1.479181] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
43
Quiney H, Skaane H, Grant I. Ab initio relativistic quantum chemistry: four-components good, two-components bad! ADVANCES IN QUANTUM CHEMISTRY 1998. [DOI: 10.1016/s0065-3276(08)60405-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
44
Kutzelnigg W. Relativistic one-electron Hamiltonians `for electrons only' and the variational treatment of the Dirac equation. Chem Phys 1997. [DOI: 10.1016/s0301-0104(97)00240-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
45
SAUE BT, FAEGRI K, HELGAKER T, GROPEN O. Principles of direct 4-component relativistic SCF: application to caesium auride. Mol Phys 1997. [DOI: 10.1080/002689797171058] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
46
Kutzelnigg W. Stationary direct perturbation theory of relativistic corrections. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1996;54:1183-1198. [PMID: 9913588 DOI: 10.1103/physreva.54.1183] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
47
Optimization of Gaussian basis sets for Dirac-Hartree-Fock calculations. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf00190154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
48
Jo/rgen Aa. Jensen H, Dyall KG, Saue T, Fægri K. Relativistic four‐component multiconfigurational self‐consistent‐field theory for molecules: Formalism. J Chem Phys 1996. [DOI: 10.1063/1.471644] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
49
Kolakowska A, Talman JD, Aashamar K. Minimax variational approach to the relativistic two-electron problem. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1996;53:168-177. [PMID: 9912871 DOI: 10.1103/physreva.53.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
50
Horbatsch M, Shapoval DV. Analysis of the Dirac-Coulomb problem in the free-particle representation. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1995;52:3348-3351. [PMID: 9912621 DOI: 10.1103/physreva.52.3348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA