Galindo E, Espiritu ERL, Gutierrez C, Alagha AN, Hudon P, Brochu M. A method to assess the quality of additive manufacturing metal powders using the triboelectric charging concept.
Sci Rep 2024;
14:16439. [PMID:
39014049 PMCID:
PMC11252403 DOI:
10.1038/s41598-024-67295-0]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
A new method to assess the quality of additive manufacturing (AM) metal powders using the triboelectric charging concept is demonstrated using CpTi, Ti6Al4V, AlSi10Mg, IN 738, and SS 316L powders. For each powder tested, the surface chemical composition was first analyzed using X-ray photoelectron spectroscopy (XPS) to determine the composition of the passivation layer. Some modifications to the current GranuCharge™ setup, developed by GranuTools™, were then performed by incorporating a flow rate measuring tool to assess how tribocharging is affected as a function of flow rate. Variations in the tribocharging response have been found with the flow rate of CpTi, AlSi10Mg and SS 316L powders. Moreover, results suggest that the tribocharging behavior might not be the same even with powders fabricated with the same passivation process. Finally, the compressed exponential model of Trachenko and Zaccone was used to reproduce the tribocharging behavior of the powders. The models were found to work best when the stretch constant β = 1.5, which is identical to the value found in other systems such as structural glasses, colloidal gels, entangled polymers, and supercooled liquids, which experience jamming when motion of individual particles become restricted, causing their motion to slow down.
Collapse