1
|
Zong QJ, Wang H, Zhang Q, Cheng X, He Y, Xu Q, Fischer A, Watanabe K, Taniguchi T, Rhodes DA, Xian L, Kennes DM, Rubio A, Yu G, Wang L. Quantum melting of generalized electron crystal in twisted bilayer MoSe 2. Nat Commun 2025; 16:4058. [PMID: 40307227 PMCID: PMC12044088 DOI: 10.1038/s41467-025-59365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Electrons can form an ordered solid crystal phase ascribed to the interplay between Coulomb repulsion and kinetic energy. Tuning these energy scales can drive a phase transition from electron solid to liquid, i.e., melting of Wigner crystal. Generalized Wigner crystals (GWCs) pinned to moiré superlattices have been reported by optical and scanning-probe-based methods. Using transport measurements to investigate GWCs is vital to a complete characterization, however, still poses a significant challenge due to difficulties in making reliable electrical contacts. Here, we report the electrical transport detection of GWCs at fractional fillings ν = 2/5, 1/2, 3/5, 2/3, 8/9, 10/9, and 4/3 in twisted bilayer MoSe2. We further observe that these GWCs undergo continuous quantum melting transitions to liquid phases by tuning doping density, magnetic and displacement fields, manifested by quantum critical scaling behaviors. Our findings establish twisted bilayer MoSe2 as a novel system to study strongly correlated states of matter and their quantum phase transitions.
Collapse
Affiliation(s)
- Qi Jun Zong
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Haolin Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, China.
- Guangzhou Institute of Technology, Xidian University, Guangzhou, China.
| | - Qi Zhang
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xinle Cheng
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, Aachen, Germany
| | - Yangchen He
- Department of Materials Science and Engineering, University of Wisconsin, Madison, USA
| | - Qiaoling Xu
- Songshan Lake Materials Laboratory, Dongguan, China
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu, China
| | - Ammon Fischer
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, Aachen, Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Daniel A Rhodes
- Department of Materials Science and Engineering, University of Wisconsin, Madison, USA
| | - Lede Xian
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Dante M Kennes
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, Aachen, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Hamburg, Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Hamburg, Germany.
- Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York, USA.
| | - Geliang Yu
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
- Jiangsu Physical Science Research Center, Nanjing, China.
| | - Lei Wang
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
- Jiangsu Physical Science Research Center, Nanjing, China.
| |
Collapse
|
2
|
Wang C, Madathil PT, Singh SK, Gupta A, Chung YJ, Pfeiffer LN, Baldwin KW, Shayegan M. Developing Fractional Quantum Hall States at Even-Denominator Fillings 1/6 and 1/8. PHYSICAL REVIEW LETTERS 2025; 134:046502. [PMID: 39951592 DOI: 10.1103/physrevlett.134.046502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/24/2024] [Indexed: 02/16/2025]
Abstract
In the extreme quantum limit, when the Landau level filling factor ν<1, the dominant electron-electron interaction in low-disorder two-dimensional electron systems leads to exotic many-body phases. The ground states at even-denominator ν=1/2 and 1/4 are typically Fermi seas of composite fermions carrying two and four flux quanta, surrounded by the Jain fractional quantum Hall states (FQHSs) at odd-denominator fillings ν=p/(2p±1) and ν=p/(4p±1), where p is an integer. For ν<1/5, an insulating behavior, which is generally believed to signal the formation of a pinned Wigner crystal, is seen. Our experiments on ultra-high-quality, dilute, GaAs two-dimensional electron systems reveal developing FQHSs at ν=p/(6p±1) and ν=p/(8p±1), manifested by magnetoresistance minima superimposed on the insulating background. In stark contrast to ν=1/2 and 1/4, however, we observe a pronounced, sharp minimum in magnetoresistance at ν=1/6 and a somewhat weaker minimum at ν=1/8, suggesting developing FQHSs, likely stabilized by the pairing of composite fermions that carry six and eight flux quanta. Our results signal the unexpected entry, in ultra-high-quality samples, of FQHSs at even-denominator fillings 1/6 and 1/8, which are likely to harbor non-Abelian anyon excitations.
Collapse
Affiliation(s)
- Chengyu Wang
- Princeton University, Department of Electrical and Computer Engineering, Princeton, New Jersey 08544, USA
| | - P T Madathil
- Princeton University, Department of Electrical and Computer Engineering, Princeton, New Jersey 08544, USA
| | - S K Singh
- Princeton University, Department of Electrical and Computer Engineering, Princeton, New Jersey 08544, USA
| | - A Gupta
- Princeton University, Department of Electrical and Computer Engineering, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Princeton University, Department of Electrical and Computer Engineering, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Princeton University, Department of Electrical and Computer Engineering, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Princeton University, Department of Electrical and Computer Engineering, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Princeton University, Department of Electrical and Computer Engineering, Princeton, New Jersey 08544, USA
| |
Collapse
|
3
|
Siemens A, Schmelcher P. Classical scattering and fragmentation of clusters of ions in helical confinement. Phys Rev E 2025; 111:014140. [PMID: 39972761 DOI: 10.1103/physreve.111.014140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025]
Abstract
We explore the scattering dynamics of classical Coulomb-interacting clusters of ions confined to a helical geometry. Ion clusters of equally charged particles constrained to a helix can form many-body bound states; i.e., they exhibit stable motion of Coulomb-interacting identical ions. We analyze the scattering and fragmentation behavior of two ion clusters, thereby understanding the rich phenomenology of their dynamics. The scattering dynamics is complex in the sense that it exhibits cascades of decay processes involving strongly varying cluster sizes. These processes are governed by the internal energy flow and the underlying oscillatory many-body potential. We specifically focus on the impact of the collision energy on the dynamics of individual ions during and immediately after the collision of two clusters and on the internal dynamics of ion clusters that are excited during a cluster collision.
Collapse
Affiliation(s)
- Ansgar Siemens
- Universität Hamburg, Zentrum für Optische Quantentechnologien, Fachbereich Physik, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Peter Schmelcher
- Universität Hamburg, Zentrum für Optische Quantentechnologien, Fachbereich Physik, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Zeng Y, Guerci D, Crépel V, Millis AJ, Cano J. Sublattice Structure and Topology in Spontaneously Crystallized Electronic States. PHYSICAL REVIEW LETTERS 2024; 132:236601. [PMID: 38905641 DOI: 10.1103/physrevlett.132.236601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
The prediction and realization of the quantum anomalous Hall effect are often intimately connected to honeycomb lattices in which the sublattice degree of freedom plays a central role in the nontrivial topology. Two-dimensional Wigner crystals, on the other hand, form triangular lattices without sublattice degrees of freedom, resulting in a topologically trivial state. Here, we discuss the possibility of spontaneously formed honeycomb-lattice crystals that exhibit the quantum anomalous Hall effect. Starting from a single-band system with nontrivial quantum geometry, we derive the mean-field energy functional of a class of crystal states and express it as a model of sublattice pseudospins in momentum space. We find that nontrivial quantum geometry leads to extra terms in the pseudospin model that break an effective "time-reversal symmetry" and favor a topologically nontrivial pseudospin texture. When the effects of these extra terms dominate over the ferromagnetic exchange coupling between pseudospins, the anomalous Hall crystal state becomes energetically favorable over the trivial Wigner crystal state.
Collapse
|
5
|
Freeman ML, Madathil PT, Pfeiffer LN, Baldwin KW, Chung YJ, Winkler R, Shayegan M, Engel LW. Origin of Pinning Disorder in Magnetic-Field-Induced Wigner Solids. PHYSICAL REVIEW LETTERS 2024; 132:176301. [PMID: 38728701 DOI: 10.1103/physrevlett.132.176301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024]
Abstract
At low Landau level filling factors (ν), Wigner solid phases of two-dimensional electron systems in GaAs are pinned by disorder and exhibit a pinning mode, whose frequency is a measure of the disorder that pins the Wigner solid. Despite numerous studies spanning the past three decades, the origin of the disorder that causes the pinning and determines the pinning mode frequency remains unknown. Here, we present a study of the pinning mode resonance in the low-ν Wigner solid phases of a series of ultralow-disorder GaAs quantum wells which are similar except for their varying well widths d. The pinning mode frequencies f_{p} decrease strongly as d increases, with the widest well exhibiting f_{p} as low as ≃35 MHz. The amount of reduction of f_{p} with increasing d can be explained remarkably well by tails of the wave function impinging into the alloy-disordered Al_{x}Ga_{1-x}As barriers that contain the electrons. However, it is imperative that the model for the confinement and wave function includes the Coulomb repulsion in the growth direction between the electrons as they occupy the quantum well.
Collapse
Affiliation(s)
- Matthew L Freeman
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - P T Madathil
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - R Winkler
- Northern Illinois University, DeKalb, Illinois 60115, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L W Engel
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| |
Collapse
|
6
|
Escobar Azor M, Alrakik A, de Bentzmann L, Telleria-Allika X, Sánchez de Merás A, Evangelisti S, Berger JA. The Emergence of the Hexagonal Lattice in Two-Dimensional Wigner Fragments. J Phys Chem Lett 2024; 15:3571-3575. [PMID: 38526852 DOI: 10.1021/acs.jpclett.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
At very low density, the electrons in a uniform electron gas spontaneously break symmetry and form a crystalline lattice called a Wigner crystal. But which type of crystal will the electrons form? We report a numerical study of the density profiles of fragments of Wigner crystals from first principles. To simulate Wigner fragments, we use Clifford periodic boundary conditions and a renormalized distance in the Coulomb potential. Moreover, we show that high-spin restricted open-shell Hartree-Fock theory becomes exact in the low-density limit. We are thus able to accurately capture the localization in two-dimensional Wigner fragments with many electrons. No assumptions about the positions where the electrons will localize are made. The density profiles we obtain emerge naturally when we minimize the total energy of the system. We clearly observe the emergence of the hexagonal crystal structure, which has been predicted to be the ground-state structure of the two-dimensional Wigner crystal.
Collapse
Affiliation(s)
- Miguel Escobar Azor
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- European Theoretical Spectroscopy Facility (ETSF), https://www.etsf.eu/
| | - Amer Alrakik
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université de Toulouse, UPS, 118 route de Narbonne, F-31062 Toulouse, France
| | - Louan de Bentzmann
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université de Toulouse, UPS, 118 route de Narbonne, F-31062 Toulouse, France
| | - Xabier Telleria-Allika
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Spain
| | | | - Stefano Evangelisti
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université de Toulouse, UPS, 118 route de Narbonne, F-31062 Toulouse, France
| | - J Arjan Berger
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université de Toulouse, UPS, 118 route de Narbonne, F-31062 Toulouse, France
- European Theoretical Spectroscopy Facility (ETSF), https://www.etsf.eu/
| |
Collapse
|
7
|
Tsui YC, He M, Hu Y, Lake E, Wang T, Watanabe K, Taniguchi T, Zaletel MP, Yazdani A. Direct observation of a magnetic-field-induced Wigner crystal. Nature 2024; 628:287-292. [PMID: 38600267 DOI: 10.1038/s41586-024-07212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/20/2024] [Indexed: 04/12/2024]
Abstract
Wigner predicted that when the Coulomb interactions between electrons become much stronger than their kinetic energy, electrons crystallize into a closely packed lattice1. A variety of two-dimensional systems have shown evidence for Wigner crystals2-11 (WCs). However, a spontaneously formed classical or quantum WC has never been directly visualized. Neither the identification of the WC symmetry nor direct investigation of its melting has been accomplished. Here we use high-resolution scanning tunnelling microscopy measurements to directly image a magnetic-field-induced electron WC in Bernal-stacked bilayer graphene and examine its structural properties as a function of electron density, magnetic field and temperature. At high fields and the lowest temperature, we observe a triangular lattice electron WC in the lowest Landau level. The WC possesses the expected lattice constant and is robust between filling factor ν ≈ 0.13 and ν ≈ 0.38 except near fillings where it competes with fractional quantum Hall states. Increasing the density or temperature results in the melting of the WC into a liquid phase that is isotropic but has a modulated structure characterized by the Bragg wavevector of the WC. At low magnetic fields, the WC unexpectedly transitions into an anisotropic stripe phase, which has been commonly anticipated to form in higher Landau levels. Analysis of individual lattice sites shows signatures that may be related to the quantum zero-point motion of electrons in the WC lattice.
Collapse
Affiliation(s)
- Yen-Chen Tsui
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Minhao He
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Yuwen Hu
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Ethan Lake
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Taige Wang
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ali Yazdani
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
8
|
Zhou H, Liang K, Bi L, Shi Y, Wang Z, Li S. Spotlight: Visualization of Moiré Quantum Phenomena in Transition Metal Dichalcogenide with Scanning Tunneling Microscopy. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:1530-1541. [PMID: 38558951 PMCID: PMC10976882 DOI: 10.1021/acsaelm.3c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/04/2024]
Abstract
Transition metal dichalcogenide (TMD) moiré superlattices have emerged as a significant area of study in condensed matter physics. Thanks to their superior optical properties, tunable electronic band structure, strong Coulomb interactions, and quenched electron kinetic energy, they offer exciting avenues to explore correlated quantum phenomena, topological properties, and light-matter interactions. In recent years, scanning tunneling microscopy (STM) has made significant impacts on the study of these fields by enabling intrinsic surface visualization and spectroscopic measurements with unprecedented atomic scale detail. Here, we spotlight the key findings and innovative developments in imaging and characterization of TMD heterostructures via STM, from its initial implementation on the in situ grown sample to the latest photocurrent tunneling microscopy. The evolution in sample design, progressing from a conductive to an insulating substrate, has not only expanded our control over TMD moiré superlattices but also promoted an understanding of their structures and strongly correlated properties, such as the structural reconstruction and formation of generalized two-dimensional Wigner crystal states. In addition to highlighting recent advancements, we outline upcoming challenges, suggest the direction of future research, and advocate for the versatile use of STM to further comprehend and manipulate the quantum dynamics in TMD moiré superlattices.
Collapse
Affiliation(s)
- Hao Zhou
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Kangkai Liang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Yueqing Shi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
| | - Zihao Wang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- School
of Physics, Nankai University, Tianjin 300071, China
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| |
Collapse
|
9
|
Madathil PT, Wang C, Singh SK, Gupta A, Rosales KAV, Chung YJ, West KW, Baldwin KW, Pfeiffer LN, Engel LW, Shayegan M. Signatures of Correlated Defects in an Ultraclean Wigner Crystal in the Extreme Quantum Limit. PHYSICAL REVIEW LETTERS 2024; 132:096502. [PMID: 38489610 DOI: 10.1103/physrevlett.132.096502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Low-disorder two-dimensional electron systems in the presence of a strong, perpendicular magnetic field terminate at very small Landau level filling factors in a Wigner crystal (WC), where the electrons form an ordered array to minimize the Coulomb repulsion. The nature of this exotic, many-body, quantum phase is yet to be fully understood and experimentally revealed. Here we probe one of WC's most fundamental parameters, namely, the energy gap that determines its low-temperature conductivity, in record mobility, ultrahigh-purity, two-dimensional electrons confined to GaAs quantum wells. The WC domains in these samples contain ≃1000 electrons. The measured gaps are a factor of three larger than previously reported for lower quality samples, and agree remarkably well with values predicted for the lowest-energy, intrinsic, hypercorrelated bubble defects in a WC made of flux-electron composite fermions, rather than bare electrons. The agreement is particularly noteworthy, given that the calculations are done for disorder-free composite fermion WCs, and there are no adjustable parameters. The results reflect the exceptionally high quality of the samples, and suggest that composite fermion WCs are indeed more stable compared to their electron counterparts.
Collapse
Affiliation(s)
- P T Madathil
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - C Wang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - S K Singh
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - A Gupta
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K A Villegas Rosales
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L W Engel
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
10
|
Wang C, Gupta A, Singh SK, Madathil PT, Chung YJ, Pfeiffer LN, Baldwin KW, Winkler R, Shayegan M. Fractional Quantum Hall State at Filling Factor ν=1/4 in Ultra-High-Quality GaAs Two-Dimensional Hole Systems. PHYSICAL REVIEW LETTERS 2023; 131:266502. [PMID: 38215363 DOI: 10.1103/physrevlett.131.266502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024]
Abstract
Single-component fractional quantum Hall states (FQHSs) at even-denominator filling factors may host non-Abelian quasiparticles that are considered to be building blocks of topological quantum computers. Such states, however, are rarely observed in the lowest-energy Landau level, namely at filling factors ν<1. Here, we report evidence for an even-denominator FQHS at ν=1/4 in ultra-high-quality two-dimensional hole systems confined to modulation-doped GaAs quantum wells. We observe a deep minimum in the longitudinal resistance at ν=1/4, superimposed on a highly insulating background, suggesting a close competition between the ν=1/4 FQHS and the magnetic-field-induced, pinned Wigner solid states. Our experimental observations are consistent with the very recent theoretical calculations that predict that substantial Landau level mixing, caused by the large hole effective mass, can induce composite fermion pairing and lead to a non-Abelian FQHS at ν=1/4. Our results demonstrate that Landau level mixing can provide a very potent means for tuning the interaction between composite fermions and creating new non-Abelian FQHSs.
Collapse
Affiliation(s)
- Chengyu Wang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - A Gupta
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - S K Singh
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - P T Madathil
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - R Winkler
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
11
|
Wang C, Gupta A, Madathil PT, Singh SK, Chung YJ, Pfeiffer LN, Baldwin KW, Shayegan M. Next-generation even-denominator fractional quantum Hall states of interacting composite fermions. Proc Natl Acad Sci U S A 2023; 120:e2314212120. [PMID: 38113254 PMCID: PMC10756197 DOI: 10.1073/pnas.2314212120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 12/21/2023] Open
Abstract
The discovery of the fractional quantum Hall state (FQHS) in 1982 ushered a new era of research in many-body condensed matter physics. Among the numerous FQHSs, those observed at even-denominator Landau level filling factors are of particular interest as they may host quasiparticles obeying non-Abelian statistics and be of potential use in topological quantum computing. The even-denominator FQHSs, however, are scarce and have been observed predominantly in low-disorder two-dimensional (2D) systems when an excited electron Landau level is half filled. An example is the well-studied FQHS at filling factor [Formula: see text] 5/2 which is believed to be a Bardeen-Cooper-Schrieffer-type, paired state of flux-particle composite fermions (CFs). Here, we report the observation of even-denominator FQHSs at [Formula: see text] 3/10, 3/8, and 3/4 in the lowest Landau level of an ultrahigh-quality GaAs 2D hole system, evinced by deep minima in longitudinal resistance and developing quantized Hall plateaus. Quite remarkably, these states can be interpreted as even-denominator FQHSs of CFs, emerging from pairing of higher-order CFs when a CF Landau level, rather than an electron or a hole Landau level, is half-filled. Our results affirm enhanced interaction between CFs in a hole system with significant Landau level mixing and, more generally, the pairing of CFs as a valid mechanism for even-denominator FQHSs, and suggest the realization of FQHSs with non-Abelian anyons.
Collapse
Affiliation(s)
- Chengyu Wang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08544
| | - Adbhut Gupta
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08544
| | - Pranav T. Madathil
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08544
| | - Siddharth K. Singh
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08544
| | - Yoon Jang Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08544
| | - Loren N. Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08544
| | - Kirk W. Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08544
| | - Mansour Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08544
| |
Collapse
|
12
|
Madathil PT, Rosales KAV, Chung YJ, West KW, Baldwin KW, Pfeiffer LN, Engel LW, Shayegan M. Moving Crystal Phases of a Quantum Wigner Solid in an Ultra-High-Quality 2D Electron System. PHYSICAL REVIEW LETTERS 2023; 131:236501. [PMID: 38134784 DOI: 10.1103/physrevlett.131.236501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 12/24/2023]
Abstract
In low-disorder, two-dimensional electron systems (2DESs), the fractional quantum Hall states at very small Landau level fillings (ν) terminate in a Wigner solid (WS) phase, where electrons arrange themselves in a periodic array. The WS is typically pinned by the residual disorder sites and manifests an insulating behavior, with nonlinear current-voltage (I-V) and noise characteristics. We report here measurements on an ultralow-disorder, dilute 2DES, confined to a GaAs quantum well. In the ν<1/5 range, superimposed on a highly insulating longitudinal resistance, the 2DES exhibits a developing fractional quantum Hall state at ν=1/7, attesting to its exceptional high quality and dominance of electron-electron interaction in the low filling regime. In the nearby insulating phases, we observe remarkable nonlinear I-V and noise characteristics as a function of increasing current, with current thresholds delineating three distinct phases of the WS: a pinned phase (P1) with very small noise, a second phase (P2) in which dV/dI fluctuates between positive and negative values and is accompanied by very high noise, and a third phase (P3) where dV/dI is nearly constant and small, and noise is about an order of magnitude lower than in P2. In the depinned (P2 and P3) phases, the noise spectrum also reveals well-defined peaks at frequencies that vary linearly with the applied current, suggestive of washboard frequencies. We discuss the data in light of a recent theory that proposes different dynamic phases for a driven WS.
Collapse
Affiliation(s)
- P T Madathil
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K A Villegas Rosales
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L W Engel
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
13
|
Alrakik A, Escobar Azor M, Brumas V, Bendazzoli GL, Evangelisti S, Berger JA. Solution to the Thomson Problem for Clifford Tori with an Application to Wigner Crystals. J Chem Theory Comput 2023; 19:7423-7431. [PMID: 37795947 DOI: 10.1021/acs.jctc.3c00550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
In its original version, the Thomson problem consists of the search for the minimum-energy configuration of a set of point-like electrons that are confined to the surface of a two-dimensional sphere (S 2 ) that repel each other according to Coulomb's law, in which the distance is the Euclidean distance in the embedding space of the sphere, i.e., R 3 . In this work, we consider the analogous problem where the electrons are confined to an n-dimensional flat Clifford torus T n with n = 1, 2, 3. Since the torus T n can be embedded in the complex manifold C n , we define the distance in the Coulomb law as the Euclidean distance in C n , in analogy to what is done for the Thomson problem on the sphere. The Thomson problem on a Clifford torus is of interest because supercells with the topology of a Clifford torus can be used to describe periodic systems such as Wigner crystals. In this work, we numerically solve the Thomson problem on a square Clifford torus. To illustrate the usefulness of our approach, we apply it to Wigner crystals. We demonstrate that the equilibrium configurations we obtain for large numbers of electrons are consistent with the predicted structures of Wigner crystals. Finally, in the one-dimensional case, we analytically obtain the energy spectrum and the phonon dispersion law.
Collapse
Affiliation(s)
- Amer Alrakik
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université de Toulouse III - Paul Sabatier, 118 route de Narbonne, Toulouse 31062, France
| | - Miguel Escobar Azor
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Laboratoire de Chimie et Physique Quantiques and European Theoretical Spectroscopy Facility (ETSF), CNRS, Université de Toulouse III - Paul Sabatier, Toulouse 31062, France
| | - Véronique Brumas
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université de Toulouse III - Paul Sabatier, 118 route de Narbonne, Toulouse 31062, France
| | | | - Stefano Evangelisti
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université de Toulouse III - Paul Sabatier, 118 route de Narbonne, Toulouse 31062, France
| | - J Arjan Berger
- Laboratoire de Chimie et Physique Quantiques and European Theoretical Spectroscopy Facility (ETSF), CNRS, Université de Toulouse III - Paul Sabatier, Toulouse 31062, France
| |
Collapse
|
14
|
Chen G, Zhang YH, Sharpe A, Zhang Z, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F. Magnetic Field-Stabilized Wigner Crystal States in a Graphene Moiré Superlattice. NANO LETTERS 2023; 23:7023-7028. [PMID: 37474137 DOI: 10.1021/acs.nanolett.3c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
ABC-stacked trilayer graphene on boron nitride (ABC-TLG/hBN) moiré superlattices provides a tunable platform for exploring Wigner crystal states in which the electron correlation can be controlled by electric and magnetic fields. Here we report the observation of magnetic field-stabilized Wigner crystal states in a ABC-TLG/hBN. We show that correlated insulating states emerge at multiple fractional and integer fillings corresponding to ν = 1/3, 2/3, 1, 4/3, 5/3, and 2 electrons per moiré lattice site under a magnetic field. These correlated insulating states can be attributed to generalized Mott states for the integer fillings and generalized Wigner crystal states for the fractional fillings. The generalized Wigner crystal states are stabilized by a vertical magnetic field and are strongest at one magnetic flux quantum per three moiré superlattices. The ν = 2 insulating state persists up to 30 T, which can be described by a Mott-Hofstadter transition at a high magnetic field.
Collapse
Affiliation(s)
- Guorui Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Ya-Hui Zhang
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Aaron Sharpe
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Quantum and Electronic Materials Department, Sandia National Laboratories, Livermore, California 94550, United States
| | - Zuocheng Zhang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Shaoxin Wang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Lili Jiang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Bosai Lyu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyuan Li
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Zhiwen Shi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - David Goldhaber-Gordon
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Yuanbo Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Feng Wang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Zhao L, Lin W, Chung YJ, Gupta A, Baldwin KW, Pfeiffer LN, Liu Y. Dynamic Response of Wigner Crystals. PHYSICAL REVIEW LETTERS 2023; 130:246401. [PMID: 37390428 DOI: 10.1103/physrevlett.130.246401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
The Wigner crystal, an ordered array of electrons, is one of the very first proposed many-body phases stabilized by the electron-electron interaction. We examine this quantum phase with simultaneous capacitance and conductance measurements, and observe a large capacitive response while the conductance vanishes. We study one sample with four devices whose length scale is comparable with the crystal's correlation length, and deduce the crystal's elastic modulus, permittivity, pinning strength, etc. Such a systematic quantitative investigation of all properties on a single sample has a great promise to advance the study of Wigner crystals.
Collapse
Affiliation(s)
- Lili Zhao
- International Center for Quantum Materials, Peking University, Haidian, Beijing 100871, China
| | - Wenlu Lin
- International Center for Quantum Materials, Peking University, Haidian, Beijing 100871, China
| | - Yoon Jang Chung
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Adbhut Gupta
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Kirk W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Loren N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Yang Liu
- International Center for Quantum Materials, Peking University, Haidian, Beijing 100871, China
| |
Collapse
|
16
|
Hossain MS, Ma MK, Villegas-Rosales KA, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Anisotropic Two-Dimensional Disordered Wigner Solid. PHYSICAL REVIEW LETTERS 2022; 129:036601. [PMID: 35905352 DOI: 10.1103/physrevlett.129.036601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The interplay between the Fermi sea anisotropy, electron-electron interaction, and localization phenomena can give rise to exotic many-body phases. An exciting example is an anisotropic two-dimensional (2D) Wigner solid (WS), where electrons form an ordered array with an anisotropic lattice structure. Such a state has eluded experiments up to now as its realization is extremely demanding: First, a WS entails very low densities where the Coulomb interaction dominates over the kinetic (Fermi) energy. Attaining such low densities while keeping the disorder low is very challenging. Second, the low-density requirement has to be fulfilled in a material that hosts an anisotropic Fermi sea. Here, we report transport measurements in a clean (low-disorder) 2D electron system with anisotropic effective mass and Fermi sea. The data reveal that at extremely low electron densities, when the r_{s} parameter, the ratio of the Coulomb to the Fermi energy, exceeds ≃38, the current-voltage characteristics become strongly nonlinear at small dc biases. Several key features of the nonlinear characteristics, including their anisotropic voltage thresholds, are consistent with the formation of a disordered, anisotropic WS pinned by the ubiquitous disorder potential.
Collapse
Affiliation(s)
- Md S Hossain
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M K Ma
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K A Villegas-Rosales
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
17
|
Sun J, Niu J, Li Y, Liu Y, Pfeiffer L, West K, Wang P, Lin X. Dynamic ordering transitions in charged solid. FUNDAMENTAL RESEARCH 2022; 2:178-183. [PMID: 38933151 PMCID: PMC11197670 DOI: 10.1016/j.fmre.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022] Open
Abstract
The phenomenon of group motion is common in nature, ranging from the schools of fish, birds and insects, to avalanches, landslides and sand drift. If we treat objects as collectively moving particles, such phenomena can be studied from a physical point of view, and the research on many-body systems has proved that marvelous effects can arise from the simplest individuals. The motion of numerous individuals presents different dynamic phases related to the ordering of the system. However, it is usually difficult to study the dynamic ordering and its transitions through experiments. Electron bubble states formed in a two-dimensional electron gas, as a type of electron solids, can be driven by an external electric field and provide a platform to study the dynamic collective behaviors. Here, we demonstrate that the noise spectrum is a powerful method to investigate the dynamics of bubble states. We observed not only the phenomena of dynamically ordered and disordered structures, but also unexpected alternations between them. Our results show that a dissipative system can convert between chaotic structures and ordered structures when tuning global parameters, which is concealed in conventional transport measurements of resistance or conductance. Moreover, charging the objects to study the electrical noise spectrum in collective motions can be an additional approach to revealing dynamic ordering transitions.
Collapse
Affiliation(s)
- Jian Sun
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Jiasen Niu
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Yifan Li
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Yang Liu
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - L.N. Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K.W. West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Pengjie Wang
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Xi Lin
- International Center for Quantum Materials, Peking University, Beijing 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Brem S, Malic E. Terahertz Fingerprint of Monolayer Wigner Crystals. NANO LETTERS 2022; 22:1311-1315. [PMID: 35048702 PMCID: PMC8832488 DOI: 10.1021/acs.nanolett.1c04620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Indexed: 05/25/2023]
Abstract
The strong Coulomb interaction in monolayer semiconductors represents a unique opportunity for the realization of Wigner crystals without external magnetic fields. In this work, we predict that the formation of monolayer Wigner crystals can be detected by their terahertz response spectrum, which exhibits a characteristic sequence of internal optical transitions. We apply the density matrix formalism to derive the internal quantum structure and the optical conductivity of the Wigner crystal and to microscopically analyze the multipeak shape of the obtained terahertz spectrum. Moreover, we predict a characteristic shift of the peak position as a function of charge density for different atomically thin materials and show how our results can be generalized to an arbitrary two-dimensional system.
Collapse
Affiliation(s)
- Samuel Brem
- Department
of Physics, Philipps University, 35037 Marburg, Germany
| | - Ermin Malic
- Department
of Physics, Philipps University, 35037 Marburg, Germany
- Department
of Physics, Chalmers University of Technology, 41258 Göteborg, Sweden
| |
Collapse
|
19
|
Chung YJ, Graf D, Engel LW, Rosales KAV, Madathil PT, Baldwin KW, West KW, Pfeiffer LN, Shayegan M. Correlated States of 2D Electrons near the Landau Level Filling ν=1/7. PHYSICAL REVIEW LETTERS 2022; 128:026802. [PMID: 35089735 DOI: 10.1103/physrevlett.128.026802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The ground state of two-dimensional electron systems (2DESs) at low Landau level filling factors (ν≲1/6) has long been a topic of interest and controversy in condensed matter. Following the recent breakthrough in the quality of ultrahigh-mobility GaAs 2DESs, we revisit this problem experimentally and investigate the impact of reduced disorder. In a GaAs 2DES sample with density n=6.1×10^{10}/cm^{2} and mobility μ=25×10^{6} cm^{2}/V s, we find a deep minimum in the longitudinal magnetoresistance (R_{xx}) at ν=1/7 when T≃104 mK. There is also a clear sign of a developing minimum in R_{xx} at ν=2/13. While insulating phases are still predominant when ν≲1/6, these minima strongly suggest the existence of fractional quantum Hall states at filling factors that comply with the Jain sequence ν=p/(2mp±1) even in the very low Landau level filling limit. The magnetic-field-dependent activation energies deduced from the relation R_{xx}∝e^{E_{A}/2kT} corroborate this view and imply the presence of pinned Wigner solid states when ν≠p/(2mp±1). Similar results are seen in another sample with a lower density, further generalizing our observations.
Collapse
Affiliation(s)
- Yoon Jang Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - D Graf
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - L W Engel
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - K A Villegas Rosales
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - P T Madathil
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
20
|
Imaging two-dimensional generalized Wigner crystals. Nature 2021; 597:650-654. [PMID: 34588665 DOI: 10.1038/s41586-021-03874-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
The Wigner crystal1 has fascinated condensed matter physicists for nearly 90 years2-14. Signatures of two-dimensional (2D) Wigner crystals were first observed in 2D electron gases under high magnetic field2-4, and recently reported in transition metal dichalcogenide moiré superlattices6-9. Direct observation of the 2D Wigner crystal lattice in real space, however, has remained an outstanding challenge. Conventional scanning tunnelling microscopy (STM) has sufficient spatial resolution but induces perturbations that can potentially alter this fragile state. Here we demonstrate real-space imaging of 2D Wigner crystals in WSe2/WS2 moiré heterostructures using a specially designed non-invasive STM spectroscopy technique. This employs a graphene sensing layer held close to the WSe2/WS2 moiré superlattice. Local STM tunnel current into the graphene layer is modulated by the underlying Wigner crystal electron lattice in the WSe2/WS2 heterostructure. Different Wigner crystal lattice configurations at fractional electron fillings of n = 1/3, 1/2 and 2/3, where n is the electron number per site, are directly visualized. The n = 1/3 and n = 2/3 Wigner crystals exhibit triangular and honeycomb lattices, respectively, to minimize nearest-neighbour occupations. The n = 1/2 state spontaneously breaks the original C3 symmetry and forms a stripe phase. Our study lays a solid foundation for understanding Wigner crystal states in WSe2/WS2 moiré heterostructures and provides an approach that is generally applicable for imaging novel correlated electron lattices in other systems.
Collapse
|
21
|
Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 2021; 595:53-57. [PMID: 34194018 DOI: 10.1038/s41586-021-03590-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/28/2021] [Indexed: 11/09/2022]
Abstract
When the Coulomb repulsion between electrons dominates over their kinetic energy, electrons in two-dimensional systems are predicted to spontaneously break continuous-translation symmetry and form a quantum crystal1. Efforts to observe2-12 this elusive state of matter, termed a Wigner crystal, in two-dimensional extended systems have primarily focused on conductivity measurements on electrons confined to a single Landau level at high magnetic fields. Here we use optical spectroscopy to demonstrate that electrons in a monolayer semiconductor with density lower than 3 × 1011 per centimetre squared form a Wigner crystal. The combination of a high electron effective mass and reduced dielectric screening enables us to observe electronic charge order even in the absence of a moiré potential or an external magnetic field. The interactions between a resonantly injected exciton and electrons arranged in a periodic lattice modify the exciton bandstructure so that an umklapp resonance arises in the optical reflection spectrum, heralding the presence of charge order13. Our findings demonstrate that charge-tunable transition metal dichalcogenide monolayers14 enable the investigation of previously uncharted territory for many-body physics where interaction energy dominates over kinetic energy.
Collapse
|
22
|
Chung YJ, Villegas Rosales KA, Baldwin KW, Madathil PT, West KW, Shayegan M, Pfeiffer LN. Ultra-high-quality two-dimensional electron systems. NATURE MATERIALS 2021; 20:632-637. [PMID: 33633355 DOI: 10.1038/s41563-021-00942-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Two-dimensional electrons confined to GaAs quantum wells are hallmark platforms for probing electron-electron interactions. Many key observations have been made in these systems as sample quality has improved over the years. Here, we present a breakthrough in sample quality via source-material purification and innovation in GaAs molecular beam epitaxy vacuum chamber design. Our samples display an ultra-high mobility of 44 × 106 cm2 V-1 s-1 at an electron density of 2.0 × 1011 cm-2. These results imply only 1 residual impurity for every 1010 Ga/As atoms. The impact of such low impurity concentration is manifold. Robust stripe and bubble phases are observed, and several new fractional quantum Hall states emerge. Furthermore, the activation gap (Δ) of the fractional quantum Hall state at the Landau-level filling (ν) = 5/2, which is widely believed to be non-Abelian and of potential use for topological quantum computing, reaches Δ ≈ 820 mK. We expect that our results will stimulate further research on interaction-driven physics in a two-dimensional setting and substantially advance the field.
Collapse
Affiliation(s)
- Yoon Jang Chung
- Department of Electrical Engineering, Princeton University, Princeton, NJ, USA.
| | | | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
| | - P T Madathil
- Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
23
|
Yang F, Zibrov AA, Bai R, Taniguchi T, Watanabe K, Zaletel MP, Young AF. Experimental Determination of the Energy per Particle in Partially Filled Landau Levels. PHYSICAL REVIEW LETTERS 2021; 126:156802. [PMID: 33929240 DOI: 10.1103/physrevlett.126.156802] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
We describe an experimental technique to measure the chemical potential μ in atomically thin layered materials with high sensitivity and in the static limit. We apply the technique to a high quality graphene monolayer to map out the evolution of μ with carrier density throughout the N=0 and N=1 Landau levels at high magnetic field. By integrating μ over filling factor ν, we obtain the ground state energy per particle, which can be directly compared to numerical calculations. In the N=0 Landau level, our data show exceptional agreement with numerical calculations over the whole Landau level without adjustable parameters as long as the screening of the Coulomb interaction by the filled Landau levels is accounted for. In the N=1 Landau level, a comparison between experimental and numerical data suggests the importance of valley anisotropic interactions and reveals a possible presence of valley-textured electron solids near odd filling.
Collapse
Affiliation(s)
- Fangyuan Yang
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Alexander A Zibrov
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Ruiheng Bai
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Andrea F Young
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
24
|
Hossain MS, Ma MK, Rosales KAV, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Observation of spontaneous ferromagnetism in a two-dimensional electron system. Proc Natl Acad Sci U S A 2020; 117:32244-32250. [PMID: 33273119 PMCID: PMC7768770 DOI: 10.1073/pnas.2018248117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
What are the ground states of an interacting, low-density electron system? In the absence of disorder, it has long been expected that as the electron density is lowered, the exchange energy gained by aligning the electron spins should exceed the enhancement in the kinetic (Fermi) energy, leading to a (Bloch) ferromagnetic transition. At even lower densities, another transition to a (Wigner) solid, an ordered array of electrons, should occur. Experimental access to these regimes, however, has been limited because of the absence of a material platform that supports an electron system with very high quality (low disorder) and low density simultaneously. Here we explore the ground states of interacting electrons in an exceptionally clean, two-dimensional electron system confined to a modulation-doped AlAs quantum well. The large electron effective mass in this system allows us to reach very large values of the interaction parameter [Formula: see text], defined as the ratio of the Coulomb to Fermi energies. As we lower the electron density via gate bias, we find a sequence of phases, qualitatively consistent with the above scenario: a paramagnetic phase at large densities, a spontaneous transition to a ferromagnetic state when [Formula: see text] surpasses 35, and then a phase with strongly nonlinear current-voltage characteristics, suggestive of a pinned Wigner solid, when [Formula: see text] exceeds [Formula: see text] However, our sample makes a transition to an insulating state at [Formula: see text], preceding the onset of the spontaneous ferromagnetism, implying that besides interaction, the role of disorder must also be taken into account in understanding the different phases of a realistic dilute electron system.
Collapse
Affiliation(s)
- M S Hossain
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
| | - M K Ma
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
| | | | - Y J Chung
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|
25
|
Ma MK, Villegas Rosales KA, Deng H, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Winkler R, Shayegan M. Thermal and Quantum Melting Phase Diagrams for a Magnetic-Field-Induced Wigner Solid. PHYSICAL REVIEW LETTERS 2020; 125:036601. [PMID: 32745416 DOI: 10.1103/physrevlett.125.036601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
A sufficiently large perpendicular magnetic field quenches the kinetic (Fermi) energy of an interacting two-dimensional (2D) system of fermions, making them susceptible to the formation of a Wigner solid (WS) phase in which the charged carriers organize themselves in a periodic array in order to minimize their Coulomb repulsion energy. In low-disorder 2D electron systems confined to modulation-doped GaAs heterostructures, signatures of a magnetic-field-induced WS appear at low temperatures and very small Landau level filling factors (ν≃1/5). In dilute GaAs 2D hole systems, on the other hand, thanks to the larger hole effective mass and the ensuing Landau level mixing, the WS forms at relatively higher fillings (ν≃1/3). Here we report our measurements of the fundamental temperature vs filling phase diagram for the 2D holes' WS-liquid thermal melting. Moreover, via changing the 2D hole density, we also probe their Landau level mixing vs filling WS-liquid quantum melting phase diagram. We find our data to be in good agreement with the results of very recent calculations, although intriguing subtleties remain.
Collapse
Affiliation(s)
- Meng K Ma
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K A Villegas Rosales
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - H Deng
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - R Winkler
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
26
|
Two-dimensional magnetic monopole gas in an oxide heterostructure. Nat Commun 2020; 11:1341. [PMID: 32165628 PMCID: PMC7067881 DOI: 10.1038/s41467-020-15213-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
Magnetic monopoles have been proposed as emergent quasiparticles in pyrochlore spin ice compounds. However, unlike semiconductors and two-dimensional electron gases where the charge degree of freedom can be actively controlled by chemical doping, interface modulation, and electrostatic gating, there is as of yet no analogue of these effects for emergent magnetic monopoles. To date, all experimental investigations have been limited to large ensembles comprised of equal numbers of monopoles and antimonopoles in bulk crystals. To address these issues, we propose the formation of a two-dimensional magnetic monopole gas (2DMG) with a net magnetic charge, confined at the interface between a spin ice and an isostructural antiferromagnetic pyrochlore iridate and whose monopole density can be controlled by an external field. Our proposal is based on Monte Carlo simulations of the thermodynamic and transport properties. This proposed 2DMG should enable experiments and devices which can be performed on magnetic monopoles, akin to two-dimensional electron gases in semiconductor heterostructures. Heterostructure interfaces have physical properties distinct from bulk materials, providing the basis for many electronic devices. Miao et al. propose a spin ice heterostructure that can host a two-dimensional gas of emergent magnetic monopoles with a net magnetic charge.
Collapse
|
27
|
Liu E, van Baren J, Taniguchi T, Watanabe K, Chang YC, Lui CH. Landau-Quantized Excitonic Absorption and Luminescence in a Monolayer Valley Semiconductor. PHYSICAL REVIEW LETTERS 2020; 124:097401. [PMID: 32202881 DOI: 10.1103/physrevlett.124.097401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
We investigate Landau-quantized excitonic absorption and luminescence of monolayer WSe_{2} under magnetic field. We observe gate-dependent quantum oscillations in the bright exciton and trions (or exciton polarons) as well as the dark trions and their phonon replicas. Our results reveal spin- and valley-polarized Landau levels (LLs) with filling factors n=+0, +1 in the bottom conduction band and n=-0 to -6 in the top valence band, including the Berry-curvature-induced n=±0 LLs of massive Dirac fermions. The LL filling produces periodic plateaus in the exciton energy shift accompanied by sharp oscillations in the exciton absorption width and magnitude. This peculiar exciton behavior can be simulated by semiempirical calculations. The experimentally deduced g factors of the conduction band (g∼2.5) and valence band (g∼15) exceed those predicted in a single-particle model (g=1.5, 5.5, respectively). Such g-factor enhancement implies strong many-body interactions in gated monolayer WSe_{2}. The complex interplay between Landau quantization, excitonic effects, and many-body interactions makes monolayer WSe_{2} a promising platform to explore novel correlated quantum phenomena.
Collapse
Affiliation(s)
- Erfu Liu
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Jeremiah van Baren
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Takashi Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Yia-Chung Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chun Hung Lui
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
28
|
Fremling M, Slingerland JK. An investigation of pre-crystalline order, ruling out Pauli crystals and introducing Pauli anti-crystals. Sci Rep 2020; 10:3710. [PMID: 32111894 PMCID: PMC7048835 DOI: 10.1038/s41598-020-60556-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 02/11/2020] [Indexed: 11/22/2022] Open
Abstract
Fluid states of matter can locally exhibit characteristics of the onset of crystalline order. Traditionally this has been theoretically investigated using multipoint correlation functions. However new measurement techniques now allow multiparticle configurations of cold atomic systems to be observed directly. This has led to a search for new techniques to characterize the configurations that are likely to be observed. One of these techniques is the configuration density (CD), which has been used to argue for the formation of “Pauli crystals” by non-interacting electrons in e.g. a harmonic trap. We show here that such Pauli crystals do not exist, but that other other interesting spatial structures can occur in the form of an “anti-Crystal”, where the fermions preferentially avoid a lattice of positions surrounding any given fermion. Further, we show that configuration densities must be treated with great care as naive application can lead to the identification of crystalline structures which are artifacts of the method and of no physical significance. We analyze the failure of the CD and suggest methods that might be more suitable for characterizing multiparticle correlations which may signal the onset of crystalline order. In particular, we introduce neighbour counting statistics (NCS), which is the full counting statistics of the particle number in a neighborhood of a given particle. We test this on two dimensional systems with emerging triangular and square crystal structures.
Collapse
Affiliation(s)
- Mikael Fremling
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands. .,Department of Theoretical Physics, Maynooth University, Maynooth, co. Kildare, Ireland.
| | - J K Slingerland
- Department of Theoretical Physics, Maynooth University, Maynooth, co. Kildare, Ireland.,Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Rd, Dublin, Ireland
| |
Collapse
|
29
|
Deng H, Pfeiffer LN, West KW, Baldwin KW, Engel LW, Shayegan M. Probing the Melting of a Two-Dimensional Quantum Wigner Crystal via its Screening Efficiency. PHYSICAL REVIEW LETTERS 2019; 122:116601. [PMID: 30951347 DOI: 10.1103/physrevlett.122.116601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 06/09/2023]
Abstract
One of the most fundamental and yet elusive collective phases of an interacting electron system is the quantum Wigner crystal (WC), an ordered array of electrons expected to form when the electrons' Coulomb repulsion energy eclipses their kinetic (Fermi) energy. In low-disorder, two-dimensional (2D) electron systems, the quantum WC is known to be favored at very low temperatures (T) and small Landau level filling factors (ν), near the termination of the fractional quantum Hall states. This WC phase exhibits an insulating behavior, reflecting its pinning by the small but finite disorder potential. An experimental determination of a T vs ν phase diagram for the melting of the WC, however, has proved to be challenging. Here we use capacitance measurements to probe the 2D WC through its effective screening as a function of T and ν. We find that, as expected, the screening efficiency of the pinned WC is very poor at very low T and improves at higher T once the WC melts. Surprisingly, however, rather than monotonically changing with increasing T, the screening efficiency shows a well-defined maximum at a T that is close to the previously reported melting temperature of the WC. Our experimental results suggest a new method to map out a T vs ν phase diagram of the magnetic-field-induced WC precisely.
Collapse
Affiliation(s)
- H Deng
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| | - L W Engel
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| |
Collapse
|
30
|
Recent Developments in the Field of the Metal-Insulator Transition in Two Dimensions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We review the latest developments in the field of the metal-insulator transition in strongly-correlated two-dimensional electron systems. Particular attention is given to recent discoveries of a sliding quantum electron solid and interaction-induced spectrum flattening at the Fermi level in high-quality silicon-based structures.
Collapse
|
31
|
Hatke AT, Deng H, Liu Y, Engel LW, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Wigner solid pinning modes tuned by fractional quantum Hall states of a nearby layer. SCIENCE ADVANCES 2019; 5:eaao2848. [PMID: 30899780 PMCID: PMC6420311 DOI: 10.1126/sciadv.aao2848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
We studied a bilayer system hosting two-dimensional electron systems (2DESs) in close proximity but isolated from one another by a thin barrier. One 2DES has low electron density and forms a Wigner solid (WS) at high magnetic fields. The other has much higher density and, in the same field, exhibits fractional quantum Hall states (FQHSs). The WS spectrum has resonances which are understood as pinning modes, oscillations of the WS within the residual disorder. We found the pinning mode frequencies of the WS are strongly affected by the FQHSs in the nearby layer. Analysis of the spectra indicates that the majority layer screens like a dielectric medium even when its Landau filling is ~1/2, at which the layer is essentially a composite fermion (CF) metal. Although the majority layer is only ~ one WS lattice constant away, a WS site only induces an image charge of ~0.1e in the CF metal.
Collapse
Affiliation(s)
- A. T. Hatke
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - H. Deng
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yang Liu
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - L. W. Engel
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - L. N. Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - K. W. West
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - K. W. Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - M. Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
32
|
Chung YJ, Baldwin KW, West KW, Haug N, van de Wetering J, Shayegan M, Pfeiffer LN. Spatial Mapping of Local Density Variations in Two-dimensional Electron Systems Using Scanning Photoluminescence. NANO LETTERS 2019; 19:1908-1913. [PMID: 30785759 DOI: 10.1021/acs.nanolett.8b05047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have developed a scanning photoluminescence technique that can directly map out the local two-dimensional electron density with a relative accuracy of ∼2.2 × 108 cm-2. The validity of this approach is confirmed by the observation of the expected density gradient in a high-quality GaAs quantum well sample that was not rotated during the molecular beam epitaxy of its spacer layer. In addition to this global variation in electron density, we observe local density fluctuations across the sample. These random density fluctuations are also seen in samples that were continuously rotated during growth, and we attribute them to residual space charges at the substrate-epitaxy interface. This is corroborated by the fact that the average magnitude of density fluctuations is increased to ∼9 × 109 cm-2 from ∼1.2 × 109 cm-2 when the buffer layer between the substrate and the quantum well is decreased by a factor of 7. Our data provide direct evidence for local density inhomogeneities even in very high-quality two-dimensional carrier systems.
Collapse
Affiliation(s)
- Yoon Jang Chung
- Department of Electrical Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| | - Kirk W Baldwin
- Department of Electrical Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| | - Kenneth W West
- Department of Electrical Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| | - Nicholas Haug
- Department of Electrical Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| | - Johannes van de Wetering
- Department of Electrical Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| | - Mansour Shayegan
- Department of Electrical Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| | - Loren N Pfeiffer
- Department of Electrical Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
33
|
Abstract
Transport results from measuring ultra-clean two-dimensional systems, containing tunable carrier densities from 7 × 10 8 cm − 2 to ∼ 1 × 10 10 cm − 2 , reveal a strongly correlated liquid up to r s ≈ 40 where a Wigner crystallization is anticipated. A critical behavior is identified in the proximity of the metal-to-insulator transition. The nonlinear DC responses for r s > 40 captures hard pinning modes that likely undergo a first order transition into an intermediate phase in the course of melting.
Collapse
|
34
|
Zhao J, Zhang Y, Jain JK. Crystallization in the Fractional Quantum Hall Regime Induced by Landau-Level Mixing. PHYSICAL REVIEW LETTERS 2018; 121:116802. [PMID: 30265120 DOI: 10.1103/physrevlett.121.116802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 06/08/2023]
Abstract
The interplay between strongly correlated liquid and crystal phases for two-dimensional electrons exposed to a high transverse magnetic field is of fundamental interest. Through the nonperturbative fixed-phase diffusion Monte Carlo method, we determine the phase diagram of the Wigner crystal in the ν-κ plane, where ν is the filling factor and κ is the strength of Landau-level (LL) mixing. The phase boundary is seen to exhibit a striking ν dependence, with the states away from the magic filling factors ν=n/(2pn+1) being much more susceptible to crystallization due to Landau-level mixing than those at ν=n/(2pn+1). Our results explain the qualitative difference between the experimental behaviors observed in n- and p-doped gallium arsenide quantum wells and, in particular, the existence of an insulating state for ν<1/3 and also for 1/3<ν<2/5 in low-density p-doped systems. We predict that, in the vicinity of ν=1/5 and ν=2/9, increasing LL mixing causes a transition not into an ordinary electron Wigner crystal, but rather into a strongly correlated crystal of composite fermions carrying two vortices.
Collapse
Affiliation(s)
- Jianyun Zhao
- Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuhe Zhang
- Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - J K Jain
- Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
35
|
Kumar M, Laitinen A, Hakonen P. Unconventional fractional quantum Hall states and Wigner crystallization in suspended Corbino graphene. Nat Commun 2018; 9:2776. [PMID: 30018365 PMCID: PMC6050265 DOI: 10.1038/s41467-018-05094-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/11/2018] [Indexed: 11/08/2022] Open
Abstract
Competition between liquid and solid states in two-dimensional electron systems is an intriguing problem in condensed matter physics. We have investigated competing Wigner crystal and fractional quantum Hall (FQH) liquid phases in atomically thin suspended graphene devices in Corbino geometry. Low-temperature magnetoconductance and transconductance measurements along with IV characteristics all indicate strong charge density dependent modulation of electron transport. Our results show unconventional FQH phases which do not fit the standard Jain's series for conventional FQH states, instead they appear to originate from residual interactions of composite fermions in partially filled Landau levels. Also at very low charge density with filling factors [Formula: see text], electrons crystallize into an ordered Wigner solid which eventually transforms into an incompressible Hall liquid at filling factors around ν ≤ 1/7. Building on the unique Corbino sample structure, our experiments pave the way for enhanced understanding of the ordered phases of interacting electrons.
Collapse
Affiliation(s)
- Manohar Kumar
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, Espoo, Finland
- Laboratoire Pierre Aigrain, Département de Physique de l'École Normale Supérieure -PSL Research University, CNRS Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, Paris, France
| | - Antti Laitinen
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, Espoo, Finland
| | - Pertti Hakonen
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, Espoo, Finland.
| |
Collapse
|
36
|
Jo I, Deng H, Liu Y, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Cyclotron Orbits of Composite Fermions in the Fractional Quantum Hall Regime. PHYSICAL REVIEW LETTERS 2018; 120:016802. [PMID: 29350938 DOI: 10.1103/physrevlett.120.016802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 06/07/2023]
Abstract
We study a bilayer GaAs hole system that hosts two distinct many-body phases at low temperatures and high perpendicular magnetic fields. The higher-density (top) layer develops a Fermi sea of composite fermions (CFs) in its half-filled lowest Landau level, while the lower-density (bottom) layer forms a Wigner crystal (WC) as its filling becomes very small. Owing to the interlayer interaction, the CFs in the top layer feel the periodic Coulomb potential of the WC in the bottom layer. We measure the magnetoresistance of the top layer while changing the bottom-layer density. As the WC layer density increases, the resistance peaks separating the adjacent fractional quantum Hall states in the top layer change nonmonotonically and attain maximum values when the cyclotron orbit of the CFs encloses one WC lattice point. These features disappear at T=275 mK when the WC melts. The observation of such geometric resonance features is unprecedented and surprising as it implies that the CFs retain a well-defined cyclotron orbit and Fermi wave vector even deep in the fractional quantum Hall regime, far from half-filling.
Collapse
Affiliation(s)
- Insun Jo
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Hao Deng
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Yang Liu
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
37
|
Inhomogeneous phases in coupled electron-hole bilayer graphene sheets: Charge Density Waves and Coupled Wigner Crystals. Sci Rep 2017; 7:11510. [PMID: 28912465 PMCID: PMC5599685 DOI: 10.1038/s41598-017-11910-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/01/2017] [Indexed: 11/08/2022] Open
Abstract
Recently proposed accurate correlation energies are used to determine the phase diagram of strongly coupled electron-hole graphene bilayers. The control parameters of the phase diagram are the charge carrier density and the insulating barrier thickness separating the bilayers. In addition to the electron-hole superfluid phase we find two new inhomogeneous ground states, a one dimensional charge density wave phase and a coupled electron-hole Wigner crystal. The elementary crystal structure of bilayer graphene plays no role in generating these new quantum phases, which are completely determined by the electrons and holes interacting through the Coulomb interaction. The experimental parameters for the new phases lie within attainable ranges and therefore coupled electron-hole bilayer graphene presents itself as an experimental system where novel emergent many-body phases can be realized.
Collapse
|
38
|
Liu Y, Hasdemir S, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Observation of an Anisotropic Wigner Crystal. PHYSICAL REVIEW LETTERS 2016; 117:106802. [PMID: 27636486 DOI: 10.1103/physrevlett.117.106802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 06/06/2023]
Abstract
We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1/3≲ν≲2/3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B_{∥}) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B_{∥}. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B_{∥} about 10 times smaller than the resistance perpendicular to B_{∥}. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal.
Collapse
Affiliation(s)
- Yang Liu
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - S Hasdemir
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
39
|
Deng H, Liu Y, Jo I, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Commensurability Oscillations of Composite Fermions Induced by the Periodic Potential of a Wigner Crystal. PHYSICAL REVIEW LETTERS 2016; 117:096601. [PMID: 27610870 DOI: 10.1103/physrevlett.117.096601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 06/06/2023]
Abstract
When the kinetic energy of a collection of interacting two-dimensional (2D) electrons is quenched at very high magnetic fields so that the Coulomb repulsion dominates, the electrons are expected to condense into an ordered array, forming a quantum Wigner crystal (WC). Although this exotic state has long been suspected in high-mobility 2D electron systems at very low Landau level fillings (ν≪1), its direct observation has been elusive. Here we present a new technique and experimental results directly probing the magnetic-field-induced WC. We measure the magnetoresistance of a bilayer electron system where one layer has a very low density and is in the WC regime (ν≪1), while the other ("probe") layer is near ν=1/2 and hosts a sea of composite fermions (CFs). The data exhibit commensurability oscillations in the magnetoresistance of the CF layer, induced by the periodic potential of WC electrons in the other layer, and provide a unique, direct glimpse at the symmetry of the WC, its lattice constant, and melting. They also demonstrate a striking example of how one can probe an exotic many-body state of 2D electrons using equally exotic quasiparticles of another many-body state.
Collapse
Affiliation(s)
- H Deng
- Department of Electrical Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544, USA
| | - Y Liu
- Department of Electrical Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544, USA
| | - I Jo
- Department of Electrical Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544, USA
| |
Collapse
|
40
|
Hatke AT, Liu Y, Engel LW, Shayegan M, Pfeiffer LN, West KW, Baldwin KW. Microwave spectroscopy of the low-filling-factor bilayer electron solid in a wide quantum well. Nat Commun 2015; 6:7071. [PMID: 25947282 PMCID: PMC4432649 DOI: 10.1038/ncomms8071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/28/2015] [Indexed: 11/30/2022] Open
Abstract
At the low Landau filling factor termination of the fractional quantum Hall effect series, two-dimensional electron systems exhibit an insulating phase that is understood as a form of pinned Wigner solid. Here we use microwave spectroscopy to probe the transition to the insulator for a wide quantum well sample that can support single-layer or bilayer states depending on its overall carrier density. We find that the insulator exhibits a resonance which is characteristic of a bilayer solid. The resonance also reveals a pair of transitions within the solid, which are not accessible to dc transport measurements. As density is biased deeper into the bilayer solid regime, the resonance grows in specific intensity, and the transitions within the insulator disappear. These behaviours are suggestive of a picture of the insulating phase as an emulsion of liquid and solid components. In 2D electron gases, insulating behaviour at low fractional quantum Hall filling factors is understood by the formation of an electronic Wigner solid. Here, the authors use microwave spectroscopy to evidence an electron liquid–solid mixed phase in bilayer states of GaAs/AlGaAs wide quantum wells.
Collapse
Affiliation(s)
- A T Hatke
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - Y Liu
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L W Engel
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
41
|
Münzberg H, Laque A, Yu S, Rezai-Zadeh K, Berthoud HR. Appetite and body weight regulation after bariatric surgery. Obes Rev 2015; 16 Suppl 1:77-90. [PMID: 25614206 PMCID: PMC4784979 DOI: 10.1111/obr.12258] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bariatric surgery continues to be remarkably efficient in treating obesity and type 2 diabetes mellitus and a debate has started whether it should remain the last resort only or also be used for the prevention of metabolic diseases. Intense research efforts in humans and rodent models are underway to identify the critical mechanisms underlying the beneficial effects with a view towards non-surgical treatment options. This non-systematic review summarizes and interprets some of this literature, with an emphasis on changes in the controls of appetite. Contrary to earlier views, surgery-induced reduction of energy intake and subsequent weight loss appear to be the main drivers for rapid improvements of glycaemic control. The mechanisms responsible for suppression of appetite, particularly in the face of the large weight loss, are not well understood. Although a number of changes in food choice, taste functions, hedonic evaluation, motivation and self-control have been documented in both humans and rodents after surgery, their importance and relative contribution to diminished appetite has not yet been demonstrated. Furthermore, none of the major candidate mechanisms postulated in mediating surgery-induced changes from the gut and other organs to the brain, such as gut hormones and sensory neuronal pathways, have been confirmed yet. Future research efforts should focus on interventional rather than descriptive approaches in both humans and rodent models.
Collapse
Affiliation(s)
- H Münzberg
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | | | | | | | | |
Collapse
|
42
|
Liu Y, Kamburov D, Hasdemir S, Shayegan M, Pfeiffer LN, West KW, Baldwin KW. Fractional quantum Hall effect and Wigner crystal of interacting composite fermions. PHYSICAL REVIEW LETTERS 2014; 113:246803. [PMID: 25541794 DOI: 10.1103/physrevlett.113.246803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Indexed: 06/04/2023]
Abstract
In two-dimensional electron systems confined to GaAs quantum wells, as a function of either tilting the sample in a magnetic field or increasing density, we observe multiple spin-polarization transitions of the fractional quantum Hall states at filling factors ν=4/5 and 5/7. The number of observed transitions provides evidence that these are fractional quantum Hall states of interacting two-flux composite fermions. Moreover, the fact that the reentrant integer quantum Hall effect near ν=4/5 always develops following the transition to full spin polarization of the ν=4/5 fractional quantum Hall state links the reentrant phase to a pinned ferromagnetic Wigner crystal of composite fermions.
Collapse
Affiliation(s)
- Yang Liu
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - D Kamburov
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - S Hasdemir
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
43
|
|
44
|
Zhang D, Huang X, Dietsche W, von Klitzing K, Smet JH. Signatures for Wigner crystal formation in the chemical potential of a two-dimensional electron system. PHYSICAL REVIEW LETTERS 2014; 113:076804. [PMID: 25170727 DOI: 10.1103/physrevlett.113.076804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Indexed: 06/03/2023]
Abstract
We investigate the evolution of the chemical potential of a two-dimensional electron system (2DES) as a function of density at a fixed magnetic field. By using a bilayer system, changes in the chemical potential of one 2DES are determined from the density variation induced in the second, nearby 2DES. At high magnetic fields around a filling factor of ν=1 or ν=2, the chemical potential jump associated with the condensation in a quantum Hall state exhibits two anomalies symmetrically located around these integer filling factors. They are attributed to the formation of a 2D Wigner crystal of quasiparticles.
Collapse
Affiliation(s)
- Ding Zhang
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - Xuting Huang
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - Werner Dietsche
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - Klaus von Klitzing
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - Jurgen H Smet
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| |
Collapse
|
45
|
Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells. Nat Commun 2014; 5:4154. [PMID: 24948190 PMCID: PMC4083423 DOI: 10.1038/ncomms5154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/19/2014] [Indexed: 11/08/2022] Open
Abstract
In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.
Collapse
|
46
|
Liu Y, Graninger AL, Hasdemir S, Shayegan M, Pfeiffer LN, West KW, Baldwin KW, Winkler R. Fractional quantum Hall effect at ν=1/2 in hole systems confined to GaAs quantum wells. PHYSICAL REVIEW LETTERS 2014; 112:046804. [PMID: 24580479 DOI: 10.1103/physrevlett.112.046804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Indexed: 06/03/2023]
Abstract
We observe the fractional quantum Hall effect (FQHE) at the even-denominator Landau level filling factor ν=1/2 in two-dimensional hole systems confined to GaAs quantum wells of width 30 to 50 nm and having bilayerlike charge distributions. The ν=1/2 FQHE is stable when the charge distribution is symmetric and only in a range of intermediate densities, qualitatively similar to what is seen in two-dimensional electron systems confined to approximately twice wider GaAs quantum wells. Despite the complexity of the hole Landau level structure, originating from the coexistence and mixing of the heavy- and light-hole states, we find the hole ν=1/2 FQHE to be consistent with a two-component, Halperin-Laughlin (Ψ331) state.
Collapse
Affiliation(s)
- Yang Liu
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - A L Graninger
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - S Hasdemir
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - R Winkler
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
47
|
Archer AC, Park K, Jain JK. Competing crystal phases in the lowest Landau level. PHYSICAL REVIEW LETTERS 2013; 111:146804. [PMID: 24138264 DOI: 10.1103/physrevlett.111.146804] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Indexed: 06/02/2023]
Abstract
We show that the solid phase between the 1/5 and 2/9 fractional quantum Hall states arises from an extremely delicate interplay between type-1 and type-2 composite fermion crystals, clearly demonstrating its nontrivial, strongly correlated character. We also compute the phase diagram of various crystals occurring over a wide range of filling factors and demonstrate that the elastic constants exhibit nonmonotonic behavior as a function of the filling factor, possibly leading to distinctive experimental signatures that can help mark the phase boundaries separating different kinds of crystals.
Collapse
Affiliation(s)
- Alexander C Archer
- Department of Physics, 104 Davey Lab, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
48
|
Mani RG, Kriisa A, Wegscheider W. Size-dependent giant-magnetoresistance in millimeter scale GaAs/AlGaAs 2D electron devices. Sci Rep 2013; 3:2747. [PMID: 24067264 PMCID: PMC3782888 DOI: 10.1038/srep02747] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/04/2013] [Indexed: 11/09/2022] Open
Abstract
Large changes in the electrical resistance induced by the application of a small magnetic field are potentially useful for device-applications. Such Giant Magneto-Resistance (GMR) effects also provide new insights into the physical phenomena involved in the associated electronic transport. This study examines a "bell-shape" negative GMR that grows in magnitude with decreasing temperatures in mm-wide devices fabricated from the high-mobility GaAs/AlGaAs 2-Dimensional Electron System (2DES). Experiments show that the span of this magnetoresistance on the magnetic-field-axis increases with decreasing device width, W, while there is no concurrent Hall resistance, Rxy, correction. A multi-conduction model, including negative diagonal-conductivity, and non-vanishing off-diagonal conductivity, reproduces experimental observations. The results suggest that a size effect in the mm-wide 2DES with mm-scale electron mean-free-paths is responsible for the observed "non-ohmic" size-dependent negative GMR.
Collapse
Affiliation(s)
- R G Mani
- Dept. of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 U.S.A
| | | | | |
Collapse
|
49
|
Liu Y, Pappas CG, Shayegan M, Pfeiffer LN, West KW, Baldwin KW. Observation of reentrant integer quantum Hall states in the lowest Landau level. PHYSICAL REVIEW LETTERS 2012; 109:036801. [PMID: 22861882 DOI: 10.1103/physrevlett.109.036801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/13/2012] [Indexed: 06/01/2023]
Abstract
Measurements on very low disorder two-dimensional electrons confined to relatively wide GaAs quantum well samples with tunable density reveal a close competition between the electron liquid and solid phases near the Landau level filling factor ν=1. As the density is raised, the fractional quantum Hall liquid at ν=4/5 suddenly disappears at a well-width dependent critical density, and then reappears at higher densities with insulating phases on its flanks. These insulating phases exhibit reentrant ν=1 integer quantum Hall effects and signal the formation of electron Wigner crystal states. Qualitatively similar phenomena are seen near ν=6/5.
Collapse
Affiliation(s)
- Yang Liu
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
50
|
Qiu RLJ, Gao XPA, Pfeiffer LN, West KW. Connecting the reentrant insulating phase and the zero-field metal-insulator transition in a 2D hole system. PHYSICAL REVIEW LETTERS 2012; 108:106404. [PMID: 22463433 DOI: 10.1103/physrevlett.108.106404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Indexed: 05/31/2023]
Abstract
We present the transport and capacitance measurements of 10 nm wide GaAs quantum wells with hole densities around the critical point of the 2D metal-insulator transition (critical density p(c) down to 0.8 × 10(10)/cm2, r(s) ∼ 36). For metallic hole density p(c) < p < p(c) + 0.15 × 10(10)/cm2, a reentrant insulating phase (RIP) is observed between the ν = 1 quantum Hall state and the zero-field metallic state and it is attributed to the formation of pinned Wigner crystal. Through studying the evolution of the RIP versus 2D hole density, we show that the RIP is incompressible and continuously connected to the zero-field insulator, suggesting a similar origin for these two phases.
Collapse
Affiliation(s)
- R L J Qiu
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|