1
|
Gonzalez-Martin J, Garcia-Munoz M, Galdon-Quiroga J, Todo Y, Dominguez-Palacios J, Dunne M, van Vuuren AJ, Liu YQ, Sanchis L, Spong D, Suttrop W, Wang X, Willensdorfer M. Active Control of Alfvén Eigenmodes by Externally Applied 3D Magnetic Perturbations. PHYSICAL REVIEW LETTERS 2023; 130:035101. [PMID: 36763388 DOI: 10.1103/physrevlett.130.035101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/27/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The suppression and excitation of Alfvén eigenmodes have been experimentally obtained, for the first time, by means of externally applied 3D perturbative fields with different spatial spectra in a tokamak plasma. The applied perturbation causes an internal fast-ion redistribution that modifies the phase-space gradients responsible for driving the modes, determining, ultimately their existence. Hybrid kinetic-magnetohydrodynamic simulations reveal an edge resonant transport layer activated by the 3D perturbative field as the responsible mechanism for the fast-ion redistribution. The results presented here may help to control fast-ion driven Alfvénic instabilities in future burning plasmas with a significant fusion born alpha particle population.
Collapse
Affiliation(s)
- J Gonzalez-Martin
- Department of Mechanical Engineering and Manufacturing, University of Seville, Camino de los Descubrimientos s/n, 41092 Seville, Spain
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - M Garcia-Munoz
- Department of Atomic, Molecular and Nuclear Physics, University of Seville, 41012 Seville, Spain
| | - J Galdon-Quiroga
- Department of Atomic, Molecular and Nuclear Physics, University of Seville, 41012 Seville, Spain
| | - Y Todo
- National Institute for Fusion Science, Toki 509-5292, Japan
| | - J Dominguez-Palacios
- Department of Atomic, Molecular and Nuclear Physics, University of Seville, 41012 Seville, Spain
| | - M Dunne
- Max Planck Institute for Plasma Physics, Boltzmannstrasse, 2 85748 Garching bei Munchen, Germany
| | - A Jansen van Vuuren
- Department of Atomic, Molecular and Nuclear Physics, University of Seville, 41012 Seville, Spain
| | - Y Q Liu
- General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
| | - L Sanchis
- Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - D Spong
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - W Suttrop
- Max Planck Institute for Plasma Physics, Boltzmannstrasse, 2 85748 Garching bei Munchen, Germany
| | - X Wang
- Max Planck Institute for Plasma Physics, Boltzmannstrasse, 2 85748 Garching bei Munchen, Germany
| | - M Willensdorfer
- Max Planck Institute for Plasma Physics, Boltzmannstrasse, 2 85748 Garching bei Munchen, Germany
| |
Collapse
|
2
|
|
3
|
Hawryluk RJ, Mueller D, Hosea J, Barnes CW, Beer M, Bell MG, Bell R, Biglari H, Bitter M, Boivin R, Bretz NL, Budny R, Bush CE, Chen L, Cheng CZ, Cowley S, Dairow DS, Efthimion PC, Fonck RJ, Fredrickson E, Furth HP, Greene G, Grek B, Grisham LR, Hammett G, Heidbrink W, Hill KW, Hoffman D, Hulse RA, Hsuan H, Janos A, Jassby DL, Jobes FC, Johnson DW, Johnson LC, Kamperschroer J, Kesner J, Phillips CK, Kilpatrick SJ, Kugel H, LaMarche PH, LeBlanc B, Manos DM, Mansfield DK, Marmar ES, Mazzucato E, McCarthy MP, Machuzak J, Mauel M, McCune D, McGuire KM, Medley SS, Monticello DR, Mikkelsen D, Nagayama Y, Navratil GA, Nazikian R, Owens DK, Park H, Park W, Paul S, Perkins F, Pitcher S, Rasmussen D, Redi MH, Rewoldt G, Roberts D, Roquemore AL, Sabbagh S, Schilling G, Schivell J, Schmidt GL, Scott SD, Snipes J, Stevens J, Stratton BC, Strachan JD, Stodiek W, Synakowski E, Tang W, Taylor G, Terry J, Timberlake JR, Ulrickson HH, Towner M, von Goeler S, Wieland R, Wilson JR, Wong KL, Woskov P, Yamada M, Young KM, Zamstorff MC, Zweben SJ. Status and Plans for TFTR. ACTA ACUST UNITED AC 2017. [DOI: 10.13182/fst92-a29907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- R. J. Hawryluk
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - D. Mueller
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - J. Hosea
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | | | - M. Beer
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - M. G. Bell
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - R. Bell
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - H. Biglari
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - M. Bitter
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - R. Boivin
- Massachusetts Institute of Technology, Cambridge, MA
| | - N. L. Bretz
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - R. Budny
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - C. E. Bush
- Oak Ridge National Laboratory, Oak Ridge, TN
| | - L. Chen
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - C. Z. Cheng
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - S. Cowley
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - D. S. Dairow
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - P. C. Efthimion
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | | | - E. Fredrickson
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - H. P. Furth
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - G. Greene
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - B. Grek
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - L. R. Grisham
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - G. Hammett
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | | | - K. W. Hill
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - D. Hoffman
- Oak Ridge National Laboratory, Oak Ridge, TN
| | - R. A. Hulse
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - H. Hsuan
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - A. Janos
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - D. L. Jassby
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - F. C. Jobes
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - D. W. Johnson
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - L. C. Johnson
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - J. Kamperschroer
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - J. Kesner
- Massachusetts Institute of Technology, Cambridge, MA
| | - C. K. Phillips
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - S. J. Kilpatrick
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - H. Kugel
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - P. H. LaMarche
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - B. LeBlanc
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - D. M. Manos
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - D. K. Mansfield
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - E. S. Marmar
- Massachusetts Institute of Technology, Cambridge, MA
| | - E. Mazzucato
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - M. P. McCarthy
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - J. Machuzak
- Massachusetts Institute of Technology, Cambridge, MA
| | - M. Mauel
- Columbia University, New York, NY
| | - D.C. McCune
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - K. M. McGuire
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - S. S. Medley
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - D. R. Monticello
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - D. Mikkelsen
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | | | | | - R. Nazikian
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - D. K. Owens
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - H. Park
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - W. Park
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - S. Paul
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - F. Perkins
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - S. Pitcher
- Canadian Fusion Fuels Technology Project, Toronto, Canada
| | | | - M. H. Redi
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - G. Rewoldt
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | | | - A. L. Roquemore
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | | | - G. Schilling
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - J. Schivell
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - G. L. Schmidt
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - S. D. Scott
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - J. Snipes
- Massachusetts Institute of Technology, Cambridge, MA
| | - J. Stevens
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - B. C. Stratton
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - J. D. Strachan
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - W. Stodiek
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - E. Synakowski
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - W. Tang
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - G. Taylor
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - J. Terry
- Massachusetts Institute of Technology, Cambridge, MA
| | - J. R. Timberlake
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - H. H. Ulrickson
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - M. Towner
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - S. von Goeler
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - R. Wieland
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - J. R. Wilson
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - K. L. Wong
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - P. Woskov
- Massachusetts Institute of Technology, Cambridge, MA
| | - M. Yamada
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - K. M. Young
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - M. C. Zamstorff
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| | - S. J. Zweben
- Plasma Physics Laboratory, Princeton University P.O. Box 451 Princeton, N.J. 08543 USA (609) 243-3306
| |
Collapse
|
4
|
Isobe M, Osakabe M, Ozaki T, Nishiura M, Goncharov PV, Veshchev E, Ogawa K, Nagaoka K, Saito K, Murakami S, Saida T, Sasao M, Toi K. Fast-Particle Diagnostics on LHD. FUSION SCIENCE AND TECHNOLOGY 2017. [DOI: 10.13182/fst10-a10828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- M. Isobe
- National Institute for Fusion Science, Toki 509-5292, Japan
| | - M. Osakabe
- National Institute for Fusion Science, Toki 509-5292, Japan
| | - T. Ozaki
- National Institute for Fusion Science, Toki 509-5292, Japan
| | - M. Nishiura
- National Institute for Fusion Science, Toki 509-5292, Japan
| | | | - E. Veshchev
- National Institute for Fusion Science, Toki 509-5292, Japan
| | - K. Ogawa
- Nagoya University, Department of Energy Science and Engineering, Nagoya 464-8603, Japan
| | - K. Nagaoka
- National Institute for Fusion Science, Toki 509-5292, Japan
| | - K. Saito
- National Institute for Fusion Science, Toki 509-5292, Japan
| | - S. Murakami
- Kyoto University, Department of Nuclear Engineering, Kyoto 606-8501, Japan
| | - T. Saida
- Tohoku University, Department of Quantum Energy Science, Sendai 980-8579, Japan
| | - M. Sasao
- Tohoku University, Department of Quantum Energy Science, Sendai 980-8579, Japan
| | - K. Toi
- National Institute for Fusion Science, Toki 509-5292, Japan
| | | |
Collapse
|
5
|
Kikuchi M, Campbell DJ. Physics of Plasma Control Toward Steady-State Operation of ITER. FUSION SCIENCE AND TECHNOLOGY 2017. [DOI: 10.13182/fst11-a11689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- M. Kikuchi
- Japan Atomic Energy Agency, Mukoyama 801-1, Naka, Ibaraki 311-0193, Japan
| | - D. J. Campbell
- ITER Organization, Route de Vinon sur Verdon, F-13115 St Paul lez Durance, France
| |
Collapse
|
6
|
Kolesnichenko YI, Lutsenko VV, Marchenko VS, Weller A, Werner AHF, Wobig HFG, Yakovenko YV, Yamazaki K. Fast-Ion Confinement and Fast-Ion-Induced Effects in Stellarators. FUSION SCIENCE AND TECHNOLOGY 2017. [DOI: 10.13182/fst04-a540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Vadym V. Lutsenko
- Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03680, Ukraine
| | | | - Arthur Weller
- Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching, D-17489 Greifswald, Germany
| | - Andreas Horst Franz Werner
- Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching, D-17489 Greifswald, Germany
| | - Horst F. G. Wobig
- Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching, D-17489 Greifswald, Germany
| | | | - Kozo Yamazaki
- National Institute for Fusion Science Oroshi-cho 322-6, Toki, 509-5292, Japan
| |
Collapse
|
7
|
|
8
|
Yang W, Li G, Hu Y, Gao X. Linear stability of toroidal Alfvén eigenmodes in the Chinese Fusion Engineering Test Reactor. FUSION ENGINEERING AND DESIGN 2017. [DOI: 10.1016/j.fusengdes.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Lilley MK, Nyqvist RM. Formation of phase space holes and clumps. PHYSICAL REVIEW LETTERS 2014; 112:155002. [PMID: 24785043 DOI: 10.1103/physrevlett.112.155002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 06/03/2023]
Abstract
It is shown that the formation of phase space holes and clumps in kinetically driven, dissipative systems is not restricted to the near threshold regime, as previously reported and widely believed. Specifically, we observe hole-clump generation from the edges of an unmodulated phase space plateau, created via excitation, phase mixing and subsequent dissipative decay of a linearly unstable bulk plasma mode in the electrostatic bump-on-tail model. This has now allowed us to elucidate the underlying physics of the hole-clump formation process for the first time. Holes and clumps develop from negative energy waves that arise due to the sharp gradients at the interface between the plateau and the nearly unperturbed, ambient distribution and destabilize in the presence of dissipation in the bulk plasma. We confirm this picture by demonstrating that the formation of such nonlinear structures in general does not rely on a "seed" wave, only on the ability of the system to generate a plateau. In addition, we observe repetitive cycles of plateau generation and erosion, the latter due to hole-clump formation and detachment, which appear to be insensitive to initial conditions and can persist for a long time. We present an intuitive discussion of why this continual regeneration occurs.
Collapse
Affiliation(s)
- M K Lilley
- Physics Department, Imperial College, London SW7 2AZ, United Kingdom
| | - R M Nyqvist
- Department of Earth and Space Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden
| |
Collapse
|
10
|
Haskey SR, Thapar N, Blackwell BD, Howard J. Synchronous imaging of coherent plasma fluctuations. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:033505. [PMID: 24689583 DOI: 10.1063/1.4868504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new method for imaging high frequency plasma fluctuations is described. A phase locked loop and field programmable gate array are used to generate gating triggers for an intensified CCD camera. A reference signal from another diagnostic such as a magnetic probe ensures that the triggers are synchronous with the fluctuation being imaged. The synchronous imaging technique allows effective frame rates exceeding millions per second, good signal to noise through the accumulation of multiple exposures per frame, and produces high resolution images without generating excessive quantities of data. The technique can be used to image modes in the MHz range opening up the possibility of spectrally filtered high resolution imaging of MHD instabilities that produce sufficient light fluctuations. Some examples of projection images of plasma fluctuations on the H-1NF heliac obtained using this approach are presented here.
Collapse
Affiliation(s)
- S R Haskey
- Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
| | - N Thapar
- Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
| | - B D Blackwell
- Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
| | - J Howard
- Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
11
|
Wang Z, Lin Z, Holod I, Heidbrink WW, Tobias B, Van Zeeland M, Austin ME. Radial localization of toroidicity-induced Alfvén eigenmodes. PHYSICAL REVIEW LETTERS 2013; 111:145003. [PMID: 24138247 DOI: 10.1103/physrevlett.111.145003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 06/02/2023]
Abstract
Linear gyrokinetic simulation of fusion plasmas finds a radial localization of the toroidal Alfvén eigenmodes (TAEs) due to the nonperturbative energetic particle (EP) contribution. The EP-driven TAE has a radial mode width much smaller than that predicted by the magnetohydrodynamic theory. The TAE radial position stays around the strongest EP pressure gradients when the EP profile evolves. The nonperturbative EP contribution is also the main cause for the breaking of the radial symmetry of the ballooning mode structure and for the dependence of the TAE frequency on the toroidal mode number. These phenomena are beyond the picture of the conventional magnetohydrodynamic theory.
Collapse
Affiliation(s)
- Zhixuan Wang
- University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Multiple Branches of Discrete Alfvén Eigenmodes in Tokamak Plasmas with Negative Magnetic Shear. JOURNAL OF FUSION ENERGY 2013. [DOI: 10.1007/s10894-013-9630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Drake DJ, Kletzing CA, Skiff F, Howes GG, Vincena S. Design and use of an Elsässer probe for analysis of Alfvén wave fields according to wave direction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:103505. [PMID: 22047292 DOI: 10.1063/1.3649950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have designed an electric and magnetic field probe which simultaneously measure both quantities in the directions perpendicular to the background magnetic field for application to Alfvén wave experiments in the Large Plasma Device at UCLA. This new probe allows for the projection of measured wave fields onto generalized Elsässer variables. Experiments were conducted in a singly ionized He plasma at 1850 G in which propagation of Alfvén waves was observed using this new probe. We demonstrate that a clear separation of transmitted and reflected signals and determination of Poynting flux and Elsässer variables can be achieved.
Collapse
Affiliation(s)
- D J Drake
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
14
|
A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution. ENERGIES 2010. [DOI: 10.3390/en3111741] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
García-Muñoz M, Hicks N, van Voornveld R, Classen IGJ, Bilato R, Bobkov V, Bruedgam M, Fahrbach HU, Igochine V, Jaemsae S, Maraschek M, Sassenberg K. Convective and diffusive energetic particle losses induced by shear Alfvén waves in the ASDEX upgrade tokamak. PHYSICAL REVIEW LETTERS 2010; 104:185002. [PMID: 20482185 DOI: 10.1103/physrevlett.104.185002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Indexed: 05/29/2023]
Abstract
We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfvén waves in a magnetically confined fusion plasma. While single toroidal Alfvén eigenmodes (TAE) and Alfvén cascades (AC) eject resonant fast ions in a convective process, an overlapping of AC and TAE spatial structures leads to a large fast-ion diffusion and loss. Diffusive fast-ion losses have been observed with a single TAE above a certain threshold in the fluctuation amplitude.
Collapse
Affiliation(s)
- M García-Muñoz
- Max-Planck-Institut für Plasmaphysik, EURATOM Association Boltzmannstrasse 2, D-85748 Garching, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hole MJ, Appel LC, Martin R. A high resolution Mirnov array for the Mega Ampere Spherical Tokamak. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:123507. [PMID: 20059144 DOI: 10.1063/1.3272713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Over the past two decades, the increase in neutral-beam heating and alpha particle production in magnetically confined fusion plasmas has led to an increase in energetic particle driven mode activity, much of which has an electromagnetic signature which can be detected by the use of external Mirnov coils. Typically, the frequency and spatial wave number band of such oscillations increase with increasing injection energy, offering new challenges for diagnostic design. In particular, as the frequency approaches the megahertz range, care must be taken to model the stray capacitance of the coil, which limits the resonant frequency of the probe; model transmission line effects in the system, which if unchecked can produce system resonances; and minimize coil conductive shielding, so as to minimize skin currents which limit the frequency response of the coil. As well as optimizing the frequency response, the coils should also be positioned to confidently identify oscillations over a wide wave number band. This work, which draws on new techniques in stray capacitance modeling and coil positioning, is a case study of the outboard Mirnov array for high-frequency acquisition in the Mega Ampere Spherical Tokamak, and is intended as a roadmap for the design of high frequency, weak field strength magnetic diagnostics.
Collapse
Affiliation(s)
- M J Hole
- Euratom/CCFE Fusion Association, Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3DB, United Kingdom.
| | | | | |
Collapse
|
17
|
Lilley MK, Breizman BN, Sharapov SE. Destabilizing effect of dynamical friction on fast-particle-driven waves in a near-threshold nonlinear regime. PHYSICAL REVIEW LETTERS 2009; 102:195003. [PMID: 19518965 DOI: 10.1103/physrevlett.102.195003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Indexed: 05/27/2023]
Abstract
The nonlinear evolution of waves excited by the resonant interaction with energetic particles, just above the instability threshold, is shown to depend on the type of relaxation process that restores the unstable distribution function. When dynamical friction dominates over diffusion in the phase space region surrounding the wave-particle resonance, an explosive evolution of the wave is found to be the only solution. This is in contrast with the case of dominant diffusion when the wave may exhibit steady-state, amplitude modulation, chaotic and explosive regimes near marginal stability. The experimentally observed differences between Alfvénic instabilities driven by neutral beam injection and those driven by ion-cyclotron resonance heating are interpreted.
Collapse
Affiliation(s)
- M K Lilley
- Physics Department, Imperial College, London, SW7 2AZ, United Kingdom.
| | | | | |
Collapse
|
18
|
García-Muñoz M, Fahrbach HU, Zohm H. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:053503. [PMID: 19499603 DOI: 10.1063/1.3121543] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].
Collapse
Affiliation(s)
- M García-Muñoz
- Max-Planck-Institut für Plasmaphysik, EURATOM Association Boltzmannstr. 2, D-85748 Garching, Germany.
| | | | | |
Collapse
|
19
|
Nazikian R, Fu GY, Austin ME, Berk HL, Budny RV, Gorelenkov NN, Heidbrink WW, Holcomb CT, Kramer GJ, McKee GR, Makowski MA, Solomon WM, Shafer M, Strait EJ, Zeeland MAV. Intense geodesic acousticlike modes driven by suprathermal ions in a tokamak plasma. PHYSICAL REVIEW LETTERS 2008; 101:185001. [PMID: 18999835 DOI: 10.1103/physrevlett.101.185001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Indexed: 05/27/2023]
Abstract
Intense axisymmetric oscillations driven by suprathermal ions injected in the direction counter to the toroidal plasma current are observed in the DIII-D tokamak. The modes appear at nearly half the ideal geodesic acoustic mode frequency, in plasmas with comparable electron and ion temperatures and elevated magnetic safety factor (q_{min}>or=2). Strong bursting and frequency chirping are observed, concomitant with large (10%-15%) drops in the neutron emission. Large electron density fluctuations (n[over ]_{e}/n_{e} approximately 1.5%) are observed with no detectable electron temperature fluctuations, confirming a dominant compressional contribution to the pressure perturbation as predicted by kinetic theory. The observed mode frequency is consistent with a recent theoretical prediction for the energetic-particle-driven geodesic acoustic mode.
Collapse
Affiliation(s)
- R Nazikian
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Nazikian R, Berk HL, Budny RV, Burrell KH, Doyle EJ, Fonck RJ, Gorelenkov NN, Holcomb C, Kramer GJ, Jayakumar RJ, La Haye RJ, McKee GR, Makowski MA, Peebles WA, Rhodes TL, Solomon WM, Strait EJ, Vanzeeland MA, Zeng L. Multitude of core-localized shear Alfvén waves in a high-temperature fusion plasma. PHYSICAL REVIEW LETTERS 2006; 96:105006. [PMID: 16605746 DOI: 10.1103/physrevlett.96.105006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Indexed: 05/08/2023]
Abstract
Evidence is presented for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments confirm wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are comparable to the scale length of electrostatic drift wave turbulence. Theoretical analysis confirms a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.
Collapse
Affiliation(s)
- R Nazikian
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wong KL, Budny R, Nazikian R, Petty CC, Greenfield CM, Heidbrink WW, Ruskov E. Alpha-channeling simulation experiment in the DIII-D tokamak. PHYSICAL REVIEW LETTERS 2004; 93:085002. [PMID: 15447196 DOI: 10.1103/physrevlett.93.085002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Indexed: 05/24/2023]
Abstract
Alfvén instabilities can reduce the central magnetic shear via redistribution of energetic ions. They can sustain a steady state internal transport barrier as demonstrated in this DIII-D tokamak experiment. Improvement in burning plasma performance based on this mechanism is discussed.
Collapse
Affiliation(s)
- K L Wong
- Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Fredrickson ED, Gorelenkov N, Cheng CZ, Bell R, Darrow D, Johnson D, Kaye S, LeBlanc B, Menard J, Kubota S, Peebles W. Observation of compressional Alfvén modes during neutral-beam heating on the national spherical torus experiment. PHYSICAL REVIEW LETTERS 2001; 87:145001. [PMID: 11580654 DOI: 10.1103/physrevlett.87.145001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2001] [Indexed: 05/23/2023]
Abstract
Neutral-beam-driven compressional Alfvén eigenmodes at frequencies below the ion cyclotron frequency have been observed and identified for the first time in the National Spherical Torus Experiment. The modes are observed as a broad spectrum of nearly equally spaced peaks in the frequency range from approximately 0.2omega(ci) to approximately 1.2omega(ci). The frequency has a scaling with toroidal field and plasma density consistent with Alfvén waves. The modes have been observed with high bandwidth magnetic pickup coils and with a reflectometer.
Collapse
Affiliation(s)
- E D Fredrickson
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Heeter RF, Fasoli AF, Sharapov SE. Chaotic regime of Alfvén Eigenmode wave-particle interaction. PHYSICAL REVIEW LETTERS 2000; 85:3177-3180. [PMID: 11019295 DOI: 10.1103/physrevlett.85.3177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2000] [Indexed: 05/23/2023]
Abstract
The chaotic regime in Alfvén eigenmode wave-particle interaction is identified for the first time in the tokamak plasma of the Joint European Torus. The Alfvén modes are driven by energetic hydrogen minority ions produced by ion cyclotron resonance heating. The experimental signatures of the chaotic regime include spectral broadening, phase flips, and nonperiodic amplitude variations. These phenomena are found to be consistent with a general nonlinear theory of kinetic instabilities near stability threshold developed by Berk, Breizman, and Pekker.
Collapse
Affiliation(s)
- R F Heeter
- Princeton Plasma Physics Lab and JET Joint Undertaking, P.O. Box 451, Princeton, New Jersey 08543, USA
| | | | | |
Collapse
|
25
|
Wong KL, Schmidt GL, Batha SH, Bell R, Chang Z, Chen L, Darrow DS, Duong HH, Fu GY, Hammett GW, Levinton F, Majeski R, Mazzucato E, Nazikian R, Owens DK, Petrov M, Rogers JH, Schilling G, Wilson JR. First evidence of collective alpha particle effect on toroidal Alfvén eigenmodes in the TFTR D-T experiment. PHYSICAL REVIEW LETTERS 1996; 76:2286-2289. [PMID: 10060659 DOI: 10.1103/physrevlett.76.2286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
26
|
Fasoli A, Borba D, Bosia G, Campbell DJ, Dobbing JA, Gormezano C, Jacquinot J, Lavanchy P, Lister JB, Marmillod P, Moret J, Santagiustina A, Sharapov S. Direct measurement of the damping of toroidicity-induced Alfvén eigenmodes. PHYSICAL REVIEW LETTERS 1995; 75:645-648. [PMID: 10060078 DOI: 10.1103/physrevlett.75.645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
27
|
|
28
|
|
29
|
Hahm TS, Chen L. Nonlinear saturation of toroidal Alfvén eigenmodes via ion compton scattering. PHYSICAL REVIEW LETTERS 1995; 74:266-269. [PMID: 10058345 DOI: 10.1103/physrevlett.74.266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
30
|
|
31
|
Strachan JD, Adler H, Alling P, Ancher C, Anderson H, Anderson JL, Ashcroft D, Barnes CW, Barnes G, Batha S, Bell MG, Bell R, Bitter M, Blanchard W, Bretz NL, Budny R, Bush CE, Camp R, Caorlin M, Cauffman S, Chang Z, Cheng CZ, Collins J, Coward G, Darrow DS, DeLooper J, Duong H, Dudek L, Durst R, Efthimion PC, Ernst D, Fisher R, Fonck RJ, Fredrickson E, Fromm N, Fu GY, Furth HP, Gentile C, Gorelenkov N, Grek B, Grisham LR, Hammett G, Hanson GR, Hawryluk RJ, Heidbrink W, Herrmann HW, Hill KW, Hosea J, Hsuan H, Janos A, Jassby DL, Jobes FC, Johnson DW, Johnson LC, Kamperschroer J, Kugel H, Lam NT, LaMarche PH, Loughlin MJ, LeBlanc B, Leonard M, Levinton FM, Machuzak J, Mansfield DK. Fusion power production from TFTR plasmas fueled with deuterium and tritium. PHYSICAL REVIEW LETTERS 1994; 72:3526-3529. [PMID: 10056222 DOI: 10.1103/physrevlett.72.3526] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
32
|
Hsu CT, Cheng CZ, Helander P, Sigmar DJ, White R. Particle dynamics in chirped-frequency fluctations. PHYSICAL REVIEW LETTERS 1994; 72:2503-2507. [PMID: 10055900 DOI: 10.1103/physrevlett.72.2503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
33
|
Weller A, Spong DA, Jaenicke R, Lazaros A, Penningsfeld FP, Sattler S. Neutral beam driven global Alfvén eigenmodes in the Wendelstein W7-AS stellarator. PHYSICAL REVIEW LETTERS 1994; 72:1220-1223. [PMID: 10056653 DOI: 10.1103/physrevlett.72.1220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
34
|
Fu GY, Cheng CZ, Wong KL. Stability of the toroidicity‐induced Alfvén eigenmode in axisymmetric toroidal equilibria. ACTA ACUST UNITED AC 1993. [DOI: 10.1063/1.860572] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
35
|
Tsai S, Chen L. Theory of kinetic ballooning modes excited by energetic particles in tokamaks. ACTA ACUST UNITED AC 1993. [DOI: 10.1063/1.860624] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
36
|
Heidbrink WW, Strait EJ, Chu MS, Turnbull AD. Observation of beta-induced Alfvén eigenmodes in the DIII-D tokamak. PHYSICAL REVIEW LETTERS 1993; 71:855-858. [PMID: 10055385 DOI: 10.1103/physrevlett.71.855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
37
|
Turnbull AD, Strait EJ, Heidbrink WW, Chu MS, Duong HH, Greene JM, Lao LL, Taylor TS, Thompson SJ. Global Alfvén modes: Theory and experiment*. ACTA ACUST UNITED AC 1993. [DOI: 10.1063/1.860742] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
38
|
Taylor G, Bell MG, Biglari H, Bitter M, Bretz NL, Budny R, Chen L, Darrow D, Efthimion PC, Ernst D, Fredrickson E, Fu GY, Grek B, Grisham L, Hammett G, Hosea JC, Janos A, Jassby D, Jobes FC, Johnson DW, Johnson LC, Majeski R, Mansfield DK, Mazzucato E, Medley SS, Mueller D, Nazikian R, Owens DK, Paul S, Park H, Phillips CK, Rogers JH, Schilling G, Schivell J, Schmidt GL, Stevens JE, Stratton BC, Strachan JD, Synakowski E, Wilson JR, Wong KL, Zweben SJ, Baylor L, Bush CE, Goldfinger RC, Hoffman DJ, Murakami M, Qualls AL, Rasmussen D, Machuzak J, Rimini F, Chang Z. Ion cyclotron range of frequency heating on the Tokamak Fusion Test Reactor*. ACTA ACUST UNITED AC 1993. [DOI: 10.1063/1.860728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
39
|
Heidbrink WW, Duong HH, Manson J, Wilfrid E, Oberman C, Strait EJ. The nonlinear saturation of beam‐driven instabilities: Theory and experiment. ACTA ACUST UNITED AC 1993. [DOI: 10.1063/1.860752] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
40
|
|
41
|
Berk HL, Breizman BN, Ye H. Map model for nonlinear alpha particle interaction with toroidal Alfvén waves. ACTA ACUST UNITED AC 1993. [DOI: 10.1063/1.860890] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
III.5. The NET device - systems for heating, fuelling and exhaust. FUSION ENGINEERING AND DESIGN 1993. [DOI: 10.1016/0920-3796(93)90102-n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Fu GY, Cheng CZ. Excitation of high‐ntoroidicity‐induced shear Alfvén eigenmodes by energetic particles and fusion alpha particles in tokamaks. ACTA ACUST UNITED AC 1992. [DOI: 10.1063/1.860328] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Chu MS, Greene JM, Lao LL, Turnbull AD, Chance MS. A numerical study of the high‐nshear Alfvén spectrum gap and the high‐ngap mode. ACTA ACUST UNITED AC 1992. [DOI: 10.1063/1.860327] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
45
|
Durst RD, Fonck RJ, Wong KL, Cheng CZ, Fredrickson ED, Paul SF. Measurements of the radial structure and poloidal spectra of toroidal Alfvén eigenmodes in the Tokamak Fusion Test Reactor. ACTA ACUST UNITED AC 1992. [DOI: 10.1063/1.860326] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
46
|
Spong DA, Carreras BA, Hedrick CL. Linearized gyrofluid model of the alpha‐destabilized toroidal Alfvén eigenmode with continuum damping effects. ACTA ACUST UNITED AC 1992. [DOI: 10.1063/1.860386] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
47
|
Mett RR, Mahajan SM. Kinetic theory of toroidicity‐induced Alfvén eigenmodes. ACTA ACUST UNITED AC 1992. [DOI: 10.1063/1.860459] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
48
|
Berk HL, Breizman BN, Ye H. Scenarios for the nonlinear evolution of alpha-particle-induced Alfvén wave instability. PHYSICAL REVIEW LETTERS 1992; 68:3563-3566. [PMID: 10045736 DOI: 10.1103/physrevlett.68.3563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
49
|
|
50
|
Hsu CT, Sigmar DJ. Alpha‐particle losses from toroidicity‐induced Alfvén eigenmodes. Part I: Phase‐space topology of energetic particle orbits in tokamak plasma. ACTA ACUST UNITED AC 1992. [DOI: 10.1063/1.860060] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|