1
|
Vallejo KD, Kabir F, Poudel N, Marianetti CA, Hurley DH, Simmonds PJ, Dennett CA, Gofryk K. Advances in actinide thin films: synthesis, properties, and future directions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:123101. [PMID: 36179676 DOI: 10.1088/1361-6633/ac968e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Actinide-based compounds exhibit unique physics due to the presence of 5f electrons, and serve in many cases as important technological materials. Targeted thin film synthesis of actinide materials has been successful in generating high-purity specimens in which to study individual physical phenomena. These films have enabled the study of the unique electron configuration, strong mass renormalization, and nuclear decay in actinide metals and compounds. The growth of these films, as well as their thermophysical, magnetic, and topological properties, have been studied in a range of chemistries, albeit far fewer than most classes of thin film systems. This relative scarcity is the result of limited source material availability and safety constraints associated with the handling of radioactive materials. Here, we review recent work on the synthesis and characterization of actinide-based thin films in detail, describing both synthesis methods and modeling techniques for these materials. We review reports on pyrometallurgical, solution-based, and vapor deposition methods. We highlight the current state-of-the-art in order to construct a path forward to higher quality actinide thin films and heterostructure devices.
Collapse
Affiliation(s)
- Kevin D Vallejo
- Condensed Matter and Materials Physics, Idaho National Laboratory, Idaho Falls, ID 83415,United States of America
| | - Firoza Kabir
- Condensed Matter and Materials Physics, Idaho National Laboratory, Idaho Falls, ID 83415,United States of America
- Glenn T Seaborg Institute, Idaho National Laboratory, Idaho Falls, ID 83415, United States of America
| | - Narayan Poudel
- Condensed Matter and Materials Physics, Idaho National Laboratory, Idaho Falls, ID 83415,United States of America
| | - Chris A Marianetti
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, United States of America
| | - David H Hurley
- Condensed Matter and Materials Physics, Idaho National Laboratory, Idaho Falls, ID 83415,United States of America
| | - Paul J Simmonds
- Department of Physics, Boise State University, Boise, ID 83725, United States of America
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725,United States of America
| | - Cody A Dennett
- Condensed Matter and Materials Physics, Idaho National Laboratory, Idaho Falls, ID 83415,United States of America
| | - Krzysztof Gofryk
- Condensed Matter and Materials Physics, Idaho National Laboratory, Idaho Falls, ID 83415,United States of America
- Glenn T Seaborg Institute, Idaho National Laboratory, Idaho Falls, ID 83415, United States of America
| |
Collapse
|
2
|
Lin Z, Choi JH, Zhang Q, Qin W, Yi S, Wang P, Li L, Wang Y, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho JH, Zeng C, Zhang Z. Flatbands and Emergent Ferromagnetic Ordering in Fe_{3}Sn_{2} Kagome Lattices. PHYSICAL REVIEW LETTERS 2018; 121:096401. [PMID: 30230862 DOI: 10.1103/physrevlett.121.096401] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/03/2018] [Indexed: 06/08/2023]
Abstract
A flatband representing a highly degenerate and dispersionless manifold state of electrons may offer unique opportunities for the emergence of exotic quantum phases. To date, definitive experimental demonstrations of flatbands remain to be accomplished in realistic materials. Here, we present the first experimental observation of a striking flatband near the Fermi level in the layered Fe_{3}Sn_{2} crystal consisting of two Fe kagome lattices separated by a Sn spacing layer. The band flatness is attributed to the local destructive interferences of Bloch wave functions within the kagome lattices, as confirmed through theoretical calculations and modelings. We also establish high-temperature ferromagnetic ordering in the system and interpret the observed collective phenomenon as a consequence of the synergetic effect of electron correlation and the peculiar lattice geometry. Specifically, local spin moments formed by intramolecular exchange interaction are ferromagnetically coupled through a unique network of the hexagonal units in the kagome lattice. Our findings have important implications to exploit emergent flat-band physics in special lattice geometries.
Collapse
Affiliation(s)
- Zhiyong Lin
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Ho Choi
- Department of Physics and HYU-HPSTAR-CIS High Pressure Research Center, Hanyang University, 17 Haengdang-Dong, SeongDong-Ku, Seoul 133-791, Korea
| | - Qiang Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Qin
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Seho Yi
- Department of Physics and HYU-HPSTAR-CIS High Pressure Research Center, Hanyang University, 17 Haengdang-Dong, SeongDong-Ku, Seoul 133-791, Korea
| | - Pengdong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Lin Li
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yifan Wang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhe Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Laiming Wei
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengbai Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Tengfei Guo
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and Hefei Science Center, Chinese Academy of Sciences, Hefei 230031, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qingyou Lu
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and Hefei Science Center, Chinese Academy of Sciences, Hefei 230031, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun-Hyung Cho
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics and HYU-HPSTAR-CIS High Pressure Research Center, Hanyang University, 17 Haengdang-Dong, SeongDong-Ku, Seoul 133-791, Korea
| | - Changgan Zeng
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|