1
|
Gauquelin N, Forte F, Jannis D, Fittipaldi R, Autieri C, Cuono G, Granata V, Lettieri M, Noce C, Miletto-Granozio F, Vecchione A, Verbeeck J, Cuoco M. Pattern Formation by Electric-Field Quench in a Mott Crystal. NANO LETTERS 2023; 23:7782-7789. [PMID: 37200109 DOI: 10.1021/acs.nanolett.3c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The control of the Mott phase is intertwined with the spatial reorganization of the electronic states. Out-of-equilibrium driving forces typically lead to electronic patterns that are absent at equilibrium, whose nature is however often elusive. Here, we unveil a nanoscale pattern formation in the Ca2RuO4 Mott insulator. We demonstrate how an applied electric field spatially reconstructs the insulating phase that, uniquely after switching off the electric field, exhibits nanoscale stripe domains. The stripe pattern has regions with inequivalent octahedral distortions that we directly observe through high-resolution scanning transmission electron microscopy. The nanotexture depends on the orientation of the electric field; it is nonvolatile and rewritable. We theoretically simulate the charge and orbital reconstruction induced by a quench dynamics of the applied electric field providing clear-cut mechanisms for the stripe phase formation. Our results open the path for the design of nonvolatile electronics based on voltage-controlled nanometric phases.
Collapse
Affiliation(s)
- Nicolas Gauquelin
- Electron Microscopy for Materials Research (EMAT), Department of Physics, University of Antwerp, BE-2020 Antwerpen, Belgium
- NANOlab Center of Excellence, University of Antwerp, BE-2020 Antwerpen, Belgium
| | - Filomena Forte
- CNR-SPIN, I-84084 Fisciano, Salerno, Italy
- Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, I-84084 Fisciano, Salerno, Italy
| | - Daen Jannis
- Electron Microscopy for Materials Research (EMAT), Department of Physics, University of Antwerp, BE-2020 Antwerpen, Belgium
- NANOlab Center of Excellence, University of Antwerp, BE-2020 Antwerpen, Belgium
| | - Rosalba Fittipaldi
- CNR-SPIN, I-84084 Fisciano, Salerno, Italy
- Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, I-84084 Fisciano, Salerno, Italy
| | - Carmine Autieri
- International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
| | - Giuseppe Cuono
- International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
| | - Veronica Granata
- Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, I-84084 Fisciano, Salerno, Italy
| | | | - Canio Noce
- CNR-SPIN, I-84084 Fisciano, Salerno, Italy
- Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, I-84084 Fisciano, Salerno, Italy
| | - Fabio Miletto-Granozio
- CNR-SPIN, I-80126 Napoli, Italy
- Dipartimento di Fisica, Università di Napoli, I-80126 Napoli, Italy
| | - Antonio Vecchione
- CNR-SPIN, I-84084 Fisciano, Salerno, Italy
- Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, I-84084 Fisciano, Salerno, Italy
| | - Johan Verbeeck
- Electron Microscopy for Materials Research (EMAT), Department of Physics, University of Antwerp, BE-2020 Antwerpen, Belgium
- NANOlab Center of Excellence, University of Antwerp, BE-2020 Antwerpen, Belgium
| | - Mario Cuoco
- CNR-SPIN, I-84084 Fisciano, Salerno, Italy
- Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
2
|
Abstract
Recent resonant X-ray scattering experiments on cuprates allowed to identify a new kind of collective excitations, known as charge density fluctuations, which have finite characteristic wave vector, short correlation length and small characteristic energy. It was then shown that these fluctuations provide a microscopic scattering mechanism that accounts for the anomalous transport properties of cuprates in the so-called strange-metal phase and are a source of anomalies in the specific heat. In this work, we retrace the main steps that led us to attributing a central role to charge density fluctuations in the strange-metal phase of cuprates, discuss the state of the art on the issue and provide an in-depth analysis of the contribution of charge density fluctuations to the specific heat.
Collapse
|
3
|
Topological Doping and Superconductivity in Cuprates: An Experimental Perspective. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hole doping into a correlated antiferromagnet leads to topological stripe correlations, involving charge stripes that separate antiferromagnetic spin stripes of opposite phases. The topological spin stripe order causes the spin degrees of freedom within the charge stripes to feel a geometric frustration with their environment. In the case of cuprates, where the charge stripes have the character of a hole-doped two-leg spin ladder, with corresponding pairing correlations, anti-phase Josephson coupling across the spin stripes can lead to a pair-density-wave order in which the broken translation symmetry of the superconducting wave function is accommodated by pairs with finite momentum. This scenario is now experimentally verified by recently reported measurements on La2−xBaxCuO4 with x=1/8. While pair-density-wave order is not common as a cuprate ground state, it provides a basis for understanding the uniform d-wave order that is more typical in superconducting cuprates.
Collapse
|
4
|
Vinograd I, Zhou R, Hirata M, Wu T, Mayaffre H, Krämer S, Liang R, Hardy WN, Bonn DA, Julien MH. Locally commensurate charge-density wave with three-unit-cell periodicity in YBa 2Cu 3O y. Nat Commun 2021; 12:3274. [PMID: 34075033 PMCID: PMC8169916 DOI: 10.1038/s41467-021-23140-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/16/2021] [Indexed: 11/20/2022] Open
Abstract
In order to identify the mechanism responsible for the formation of charge-density waves (CDW) in cuprate superconductors, it is important to understand which aspects of the CDW's microscopic structure are generic and which are material-dependent. Here, we show that, at the local scale probed by NMR, long-range CDW order in YBa2Cu3Oy is unidirectional with a commensurate period of three unit cells (λ = 3b), implying that the incommensurability found in X-ray scattering is ensured by phase slips (discommensurations). Furthermore, NMR spectra reveal a predominant oxygen character of the CDW with an out-of-phase relationship between certain lattice sites but no specific signature of a secondary CDW with λ = 6b associated with a putative pair-density wave. These results shed light on universal aspects of the cuprate CDW. In particular, its spatial profile appears to generically result from the interplay between an incommensurate tendency at long length scales, possibly related to properties of the Fermi surface, and local commensuration effects, due to electron-electron interactions or lock-in to the lattice.
Collapse
Affiliation(s)
- Igor Vinograd
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France.
| | - Rui Zhou
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France
- Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing, China
| | - Michihiro Hirata
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France
- MPA-Q, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Tao Wu
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Hadrien Mayaffre
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France
| | - Steffen Krämer
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France
| | - Ruixing Liang
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Canadian Institute for Advanced Research, Toronto, Canada
| | - W N Hardy
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Canadian Institute for Advanced Research, Toronto, Canada
| | - D A Bonn
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Canadian Institute for Advanced Research, Toronto, Canada
| | - Marc-Henri Julien
- Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, LNCMI, Grenoble, France.
| |
Collapse
|
5
|
Revival of Charge Density Waves and Charge Density Fluctuations in Cuprate High-Temperature Superconductors. CONDENSED MATTER 2020. [DOI: 10.3390/condmat5040070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
I present here a short memory of my scientific contacts with K.A. Müller starting from the Interlaken Conference (1988), Erice (1992 and 1993), and Cottbus (1994) on the initial studies on phase separation (PS) and charge inhomogeneity in cuprates carried out against the view of the majority of the scientific community at that time. Going over the years and passing through the charge density wave (CDW) instability of the correlated Fermi liquid (FL) and to the consequences of charge density fluctuations (CDFs), I end with a presentation of my current research activity on CDWs and the related two-dimensional charge density fluctuations (2D-CDFs). A scenario follows of the physics of cuprates, which includes the solution of the decades-long problem of the strange metal (SM) state.
Collapse
|
6
|
Abstract
The microscopic mechanism of charge instabilities and the formation of inhomogeneous states in systems with strong electron correlations is investigated. We demonstrate that within a strong coupling expansion the single-band Hubbard model shows an instability towards phase separation and extend the approach also for an analysis of phase separation in the Hubbard-Kanamori hamiltonian as a prototypical multiband model. We study the pairing fluctuations on top of an inhomogeneous stripe state where superconducting correlations in the extended s-wave and d-wave channels correspond to (anti)bound states in the two-particle spectra. Whereas extended s-wave fluctuations are relevant on the scale of the local interaction parameter U, we find that d-wave fluctuations are pronounced in the energy range of the active subband which crosses the Fermi level. As a result, low energy spin and charge fluctuations can transfer the d-wave correlations from the bound states to the low energy quasiparticle bands. Our investigations therefore help to understand the coexistence of stripe correlations and d-wave superconductivity in cuprates.
Collapse
|
7
|
Wang X, Yuan Y, Xue QK, Li W. Charge ordering in high-temperature superconductors visualized by scanning tunneling microscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:013002. [PMID: 31487703 DOI: 10.1088/1361-648x/ab41c5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the discovery of stripe order in La1.6-x Nd0.4Sr x CuO4 superconductors in 1995, charge ordering in cuprate superconductors has been intensively studied by various experimental techniques. Among these studies, scanning tunneling microscope (STM) plays an irreplaceable role in determining the real space structures of charge ordering. STM imaging of different families of cuprates over a wide range of doping levels reveal similar checkerboard-like patterns, indicating that such a charge ordered state is likely a ubiquitous and intrinsic characteristic of cuprate superconductors, which may shed light on understanding the mechanism of high-temperature superconductivity. In another class of high-temperature superconductors, iron-based superconductors, STM studies reveal several charge ordered states as well, but their real-space patterns and the interplay with superconductivity are markedly different among different materials. In this paper, we present a brief review on STM studies of charge ordering in these two classes of high-temperature superconductors. Possible origins of charge ordering and its interplay with superconductivity will be discussed.
Collapse
Affiliation(s)
- Xintong Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China. Collaborative Innovation Center of Quantum Matter, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Zhao H, Ren Z, Rachmilowitz B, Schneeloch J, Zhong R, Gu G, Wang Z, Zeljkovic I. Charge-stripe crystal phase in an insulating cuprate. NATURE MATERIALS 2019; 18:103-107. [PMID: 30559411 DOI: 10.1038/s41563-018-0243-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
High-temperature (high-Tc) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases1. The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state1-3, but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi2Sr2CaCu2O8+x. In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4a0 period along the Cu-O-Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high-Tc cuprates.
Collapse
Affiliation(s)
- He Zhao
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Zheng Ren
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | | | | | | | - Genda Gu
- Brookhaven National Laboratory, Upton, NY, USA
| | - Ziqiang Wang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Ilija Zeljkovic
- Department of Physics, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
9
|
Rotondo P, Sellerio AL, Glorioso P, Caracciolo S, Cosentino Lagomarsino M, Gherardi M. Current quantization and fractal hierarchy in a driven repulsive lattice gas. Phys Rev E 2017; 96:052141. [PMID: 29347707 DOI: 10.1103/physreve.96.052141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 06/07/2023]
Abstract
Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.
Collapse
Affiliation(s)
- Pietro Rotondo
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | - Pietro Glorioso
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
| | - Sergio Caracciolo
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
- INFN Milano, via Celoria 16, 20133 Milano, Italy
| | - Marco Cosentino Lagomarsino
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 5 Place Jussieu, 75005 Paris, France
- CNRS, UMR 7238, Computational and Quantitative Biology, France
| | - Marco Gherardi
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 5 Place Jussieu, 75005 Paris, France
| |
Collapse
|
10
|
Riesch C, Radons G, Magerle R. Scaling properties of ageing orientation fluctuations in stripe phases. Interface Focus 2017; 7:20160146. [PMID: 28630676 PMCID: PMC5474038 DOI: 10.1098/rsfs.2016.0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigate the non-equilibrium dynamics of an ordered stripe-forming system free of topological defects. In particular, we study the ageing and the coarsening of orientation fluctuations parallel and perpendicular to the stripes via computer simulations based on a minimal phase-field model (model B with Coulomb interactions). Under the influence of noise, the stripe orientation field develops fluctuations parallel to the stripes, with the dominant modulation length λ*∥ increasing with time t as λ*∥ ∼ t1/4 and the correlation length perpendicular to the stripes ξ⊥θ increasing as ξ⊥θ ∼ t1/2. We explain these anisotropic coarsening dynamics with an analytic theory based on the linear elastic model for stripe displacements first introduced by Landau and Peierls. We thus obtain the scaling forms and the scaling exponents characterizing the correlation functions and the structure factor of the stripe orientation field. Our results reveal how the coarsening of orientation fluctuations prevents a periodically modulated phase free of topological defects from reaching equilibrium.
Collapse
Affiliation(s)
- Christian Riesch
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Günter Radons
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Robert Magerle
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| |
Collapse
|
11
|
Civardi E, Moroni M, Babij M, Bukowski Z, Carretta P. Superconductivity Emerging from an Electronic Phase Separation in the Charge Ordered Phase of RbFe_{2}As_{2}. PHYSICAL REVIEW LETTERS 2016; 117:217001. [PMID: 27911551 DOI: 10.1103/physrevlett.117.217001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/06/2023]
Abstract
^{75}As, ^{87}Rb, and ^{85}Rb nuclear quadrupole resonance (NQR) and ^{87}Rb nuclear magnetic resonance measurements in a RbFe_{2}As_{2} iron-based superconductor are presented. We observe a marked broadening of the ^{75}As NQR spectrum below T_{0}≃140 K which is associated with the onset of a charge order in the FeAs planes. Below T_{0} we observe a power-law decrease in the ^{75}As nuclear spin-lattice relaxation rate down to T^{*}≃20 K. Below T^{*} the nuclei start to probe different dynamics owing to the different local electronic configurations induced by the charge order. A fraction of the nuclei probes spin dynamics associated with electrons approaching a localization while another fraction probes activated dynamics possibly associated with a pseudogap. These different trends are discussed in light of an orbital selective behavior expected for the electronic correlations.
Collapse
Affiliation(s)
- E Civardi
- Department of Physics, University of Pavia-CNISM, I-27100 Pavia, Italy
| | - M Moroni
- Department of Physics, University of Pavia-CNISM, I-27100 Pavia, Italy
| | - M Babij
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Z Bukowski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - P Carretta
- Department of Physics, University of Pavia-CNISM, I-27100 Pavia, Italy
| |
Collapse
|
12
|
Commensurate 4 a0-period charge density modulations throughout the Bi 2Sr 2CaCu 2O 8+x pseudogap regime. Proc Natl Acad Sci U S A 2016; 113:12661-12666. [PMID: 27791157 DOI: 10.1073/pnas.1614247113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Theories based upon strong real space (r-space) electron-electron interactions have long predicted that unidirectional charge density modulations (CDMs) with four-unit-cell (4a0) periodicity should occur in the hole-doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector QA of the CDM to evolve continuously as if driven primarily by momentum-space (k-space) effects. Here we introduce phase-resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this technique reveals a virtually doping-independent locking of the local CDM wavevector at [Formula: see text] throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8 These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi-surface)-based picture of the cuprate CDMs but are consistent with strong-coupling r-space-based theories. Our findings imply that it is the latter that provides the intrinsic organizational principle for the cuprate CDM state.
Collapse
|
13
|
Limmer DT. Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces. PHYSICAL REVIEW LETTERS 2015; 115:256102. [PMID: 26722928 DOI: 10.1103/physrevlett.115.256102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 06/05/2023]
Abstract
A theory is constructed for dense ionic solutions near charged planar walls that is valid for strong interionic correlations. This theory predicts a fluctuation-induced, first-order transition and spontaneous charge density ordering at the interface, in the presence of an otherwise disordered bulk solution. The surface ordering is driven by applied voltage and results in an anomalous differential capacitance, in agreement with recent simulation results and consistent with experimental observations of a wide array of systems. Explicit forms for the charge density profile and capacitance are given. The theory is compared with numerical results for the charge frustrated Ising model, which is also found to exhibit a voltage driven first-order transition.
Collapse
Affiliation(s)
- David T Limmer
- Princeton Center for Theoretical Science, Princeton University, Princeton New Jersey 08540, USA
| |
Collapse
|
14
|
Riesch C, Radons G, Magerle R. Aging of orientation fluctuations in stripe phases. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052101. [PMID: 25493734 DOI: 10.1103/physreve.90.052101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 06/04/2023]
Abstract
Stripe patterns, observed in a large variety of physical systems, often exhibit a slow nonequilibrium dynamics because ordering is impeded by the presence of topological defects. Using computer simulations based on a well-established model for stripe formation, we show that a slow dynamics and aging occur also in stripe patterns free of topological defects. For a wide range of noise strengths, the two-time orientation correlation function follows a scaling form that is typical for systems exhibiting a growing length scale. In our case, the underlying mechanism is the coarsening of orientation fluctuations, ultimately leading to power-law spatial correlations perpendicular to the stripes. Our results show that even for the smallest amount of noise, stripe phases without topological defects do not reach equilibrium. This constitutes an important aspect of the dynamics of modulated phases.
Collapse
Affiliation(s)
- Christian Riesch
- Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Günter Radons
- Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Robert Magerle
- Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| |
Collapse
|
15
|
Lee H, Tsouris V, Lim Y, Mustafa R, Choi J, Choi YH, Park HW, Meron M, Lin B, Won YY. Macroscopic lateral heterogeneity observed in a laterally mobile immiscible mixed polyelectrolyte-neutral polymer brush. SOFT MATTER 2014; 10:3771-82. [PMID: 24695635 PMCID: PMC4397986 DOI: 10.1039/c4sm00022f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We studied mixed poly(ethylene oxide) (PEO) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes. The question we attempted to answer was: when the chain grafting points are laterally mobile, how will this lateral mobility influence the structure and phase behavior of the mixed brush? Three different model mixed PEO/PDMAEMA brush systems were prepared: (1) a laterally mobile mixed brush by spreading onto the air-water interface a mixture of poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) and poly(2-(dimethylamino)ethyl methacrylate)-poly(n-butyl acrylate) (PDMAEMA-PnBA) diblock copolymers (the specific diblock copolymers used will be denoted as PEO113-PnBA100 and PDMAEMA118-PnBA100, where the subscripts refer to the number-average degrees of polymerization of the individual blocks), (2) a mobility-restricted (inseparable) version of the above mixed brush prepared using a PEO-PnBA-PDMAEMA triblock copolymer (denoted as PEO113-PnBA89-PDMAEMA120) having respective brush molecular weights matched with those of the diblock copolymers, and (3) a different laterally mobile mixed PEO and PDMAEMA brush prepared from a PEO113-PnBA100 and PDMAEMA200-PnBA103 diblock copolymer combination, which represents a further more height-mismatched mixed brush situation than described in (1). These three mixed brush systems were investigated by surface pressure-area isotherm and X-ray (XR) reflectivity measurements. These experimental data were analyzed within the theoretical framework of a continuum self-consistent field (SCF) polymer brush model. The combined experimental and theoretical results suggest that the mobile mixed brush derived using the PEO113-PnBA100 and PDMAEMA118-PnBA100 combination (i.e., mixed brush System #1) undergoes a lateral macroscopic phase separation at high chain grafting densities, whereas the more height-mismatched system (System #3) is only microscopically phase separated under comparable brush density conditions even though the lateral mobility of the grafted chains is unrestricted. The macroscopic phase separation observed in the laterally mobile mixed brush system is in contrast with the microphase separation behavior commonly observed in two-dimensional laterally mobile charged small molecule mixtures. Further study is needed to determine the detailed morphologies of the macro- and microphase-separated mixed PEO/PDMAEMA brushes.
Collapse
Affiliation(s)
- Hoyoung Lee
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rademaker L, Pramudya Y, Zaanen J, Dobrosavljević V. Influence of long-range interactions on charge ordering phenomena on a square lattice. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032121. [PMID: 24125227 DOI: 10.1103/physreve.88.032121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/01/2013] [Indexed: 06/02/2023]
Abstract
Usually complex charge ordering phenomena arise due to competing interactions. We have studied how such ordered patterns emerge from the frustration of a long-ranged interaction on a lattice. Using the lattice gas model on a square lattice with fixed particle density, we have identified several interesting phases, such as a generalization of Wigner crystals at low particle densities and stripe phases at densities between ρ=1/3 and 1/2. These stripes act as domain walls in the checkerboard phase present at half-filling. The phases are characterized at zero temperatures using numerical simulations, and mean field theory is used to construct a finite temperature phase diagram.
Collapse
Affiliation(s)
- Louk Rademaker
- Institute-Lorentz for Theoretical Physics, Leiden University, PO Box 9506, NL-2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
17
|
Kivelson D, Tarjus G, Kivelson SA. A Viewpoint, Model and Theory for Supercooled Liquids. ACTA ACUST UNITED AC 2013. [DOI: 10.1143/ptp.126.289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Bachelard R, Staniscia F. Non-mean-field effects in systems with long-range forces in competition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:051134. [PMID: 23214765 DOI: 10.1103/physreve.86.051134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Indexed: 06/01/2023]
Abstract
We investigate the canonical equilibrium of systems with long-range forces in competition. These forces create a modulation in the interaction potential and modulated phases appear at the system scale. The structure of these phases differentiate this system from monotonic potentials, where only the mean-field and disordered phases exist. With increasing temperature, the system switches from one ordered phase to another through a first-order phase transition. Both mean-field and modulated phases may be stable, even at zero temperature, and the long-range nature of the interaction will lead to metastability characterized by extremely long time scales.
Collapse
Affiliation(s)
- R Bachelard
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | | |
Collapse
|
19
|
Inoue M, Tanaka S, Frusawa H. Histone-based self-assembly into DNA-wrapped meso-clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:072206. [PMID: 21411876 DOI: 10.1088/0953-8984/23/7/072206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The recent discovery of meso-cluster phase includes not only colloidal molecules of synthetic polymer particles but also equilibrium protein clusters. Here we report self-assembly of histone protein into stable submicron clusters that can be generated even in centrifuged supernatants containing no initial aggregates. Furthermore, dark-field microscopy of the electrophoresis has verified charge reversal of individual histone clusters by adding DNA. We have determined the critical nucleotide concentration at which the electrophoretic mobility vanishes in three types of DNA, revealing the coexistence of nucleosomes with DNA-wrapped meso-clusters.
Collapse
Affiliation(s)
- M Inoue
- Center for Nanoscience and Nanotechnology, Kochi University of Technology, Tosa-Yamada, Kochi 782-8502, Japan
| | | | | |
Collapse
|
20
|
Edlund E, Jacobi MN. Universality of striped morphologies. PHYSICAL REVIEW LETTERS 2010; 105:137203. [PMID: 21230804 DOI: 10.1103/physrevlett.105.137203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/20/2010] [Indexed: 05/30/2023]
Abstract
We present a method for predicting the low-temperature behavior of spherical and Ising spin models with isotropic potentials. For the spherical model the characteristic length scales of the ground states are exactly determined but the morphology is shown to be degenerate with checkerboard patterns, stripes and more complex morphologies having identical energy. For the Ising models we show that the discretization breaks the degeneracy causing striped morphologies to be energetically favored and therefore they arise universally as ground states to potentials whose Hankel transforms have nontrivial minima.
Collapse
Affiliation(s)
- E Edlund
- Complex Systems Group, Department of Energy and Environment, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
| | | |
Collapse
|
21
|
Santos A, Singh C, Glotzer SC. Coarse-grained models of tethers for fast self-assembly simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:011113. [PMID: 20365329 DOI: 10.1103/physreve.81.011113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Indexed: 05/29/2023]
Abstract
Long molecular ligands or "tethers" play an important role in the self-assembly of many nanoscale systems. These tethers, whose only interaction may be a hard-core repulsion, contribute significantly to the free energy of the system because of their large conformational entropy. Here, we investigate how simple approximate models can be developed and used to quickly determine the configurations into which tethers will self assemble in nanoscale systems. We derive criteria that determine when these models are expected to be accurate. Finally, we propose a generalized two-body approximation that can be used as a toy model for the self-assembly of tethers in systems of arbitrary geometry and apply this to the self-assembly of self-assembled monolayers on a planar surface. We compare our results to those in the literature obtained via atomistic and dissipative particle dynamics simulations.
Collapse
Affiliation(s)
- Aaron Santos
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
| | | | | |
Collapse
|
22
|
Ortix C, Lorenzana J, Di Castro C. Coulomb-frustrated phase separation phase diagram in systems with short-range negative compressibility. PHYSICAL REVIEW LETTERS 2008; 100:246402. [PMID: 18643604 DOI: 10.1103/physrevlett.100.246402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Indexed: 05/26/2023]
Abstract
Using numerical techniques and asymptotic expansions we obtain the phase diagram of a paradigmatic model of Coulomb-frustrated phase separation in systems with negative short-range compressibility. The transition from the homogeneous phase to the inhomogeneous phase is generically first order in isotropic three-dimensional systems except for a critical point. Close to the critical point, inhomogeneities are predicted to form a bcc lattice with subsequent transitions to a triangular lattice of rods and a layered structure. Inclusion of a strong anisotropy allows for second- and first-order transition lines joined by a tricritical point.
Collapse
Affiliation(s)
- C Ortix
- Dipartimento di Fisica, Università del Salento and INFN Sezione di Lecce, Via per Arnesano, 73100 Lecce, Italy
| | | | | |
Collapse
|
23
|
Kohlstedt KL, Solis FJ, Vernizzi G, de la Cruz MO. Spontaneous chirality via long-range electrostatic forces. PHYSICAL REVIEW LETTERS 2007; 99:030602. [PMID: 17678276 DOI: 10.1103/physrevlett.99.030602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Indexed: 05/16/2023]
Abstract
We consider a model for periodic patterns of charges constrained over a cylindrical surface. In particular we focus on patterns of chiral helices, achiral rings, or vertical lamellae, with the constraint of global electroneutrality. We study the dependence of the patterns' size and pitch angle on the radius of the cylinder and salt concentration. We obtain a phase diagram by using numerical and analytic techniques. For pure Coulomb interactions, we find a ring phase for small radii and a chiral helical phase for large radii. At a critical salt concentration, the characteristic domain size diverges, resulting in an achiral macroscopic phase-segregated structure. We discuss possible consequences and generalizations of our model.
Collapse
Affiliation(s)
- Kevin L Kohlstedt
- Department of Materials Science, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
24
|
Tarzia M, Coniglio A. Lamellar order, microphase structures, and glassy phase in a field theoretic model for charged colloids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:011410. [PMID: 17358153 DOI: 10.1103/physreve.75.011410] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Indexed: 05/06/2023]
Abstract
In this paper we present a detailed analytical study of the phase diagram and of the structural properties of a field theoretic model with a short-range attraction and a competing long-range screened repulsion. We provide a full derivation and expanded discussion and digression on results previously reported briefly in M. Tarzia and A. Coniglio, Phys. Rev. Lett. 96, 075702 (2006). The model contains the essential features of the effective interaction potential among charged colloids in polymeric solutions. We employ the self-consistent Hartree approximation and a replica approach, and we show that varying the parameters of the repulsive potential and the temperature yields a phase coexistence, a lamellar and a glassy phase. Our results suggest that the cluster phase observed in charged colloids might be the signature of an underlying equilibrium lamellar phase, hidden on experimental time scales, and emphasize that the formation of microphase structures may play a prominent role in the process of colloidal gelation.
Collapse
Affiliation(s)
- Marco Tarzia
- Dipartimento di Scienze Fisiche and INFN sezione di Napoli, Università degli Studi di Napoli "Federico II," Complesso Universitario di Monte Sant'Angelo, via Cinthia, 80126 Napoli, Italy
| | | |
Collapse
|
25
|
Loverde SM, Velichko YS, Olvera de la Cruz M. Competing interactions in two dimensional Coulomb systems: Surface charge heterogeneities in coassembled cationic-anionic incompatible mixtures. J Chem Phys 2006; 124:144702. [PMID: 16626226 DOI: 10.1063/1.2181573] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A binary mixture of oppositely charged components confined to a plane such as cationic and anionic lipid bilayers may exhibit local segregation. The relative strengths of the net short range interactions, which favors macroscopic segregation, and the long range electrostatic interactions, which favors mixing, determine the length scale of the finite size or microphase segregation. The free energy of the system can be examined analytically in two separate regimes, when considering small density fluctuations at high temperatures and when considering the periodic ordering of the system at low temperatures [F. J. Solis, S. I. Stupp, and M. Olvera de la Cruz, J. Chem. Phys. 122, 054905 (2005)]. A simple molecular dynamics simulation of oppositely charged monomers, interacting with a short range Lennard-Jones potential and confined to a two dimensional plane, is examined at different strengths of short and long range interactions. The system exhibits well-defined domains that can be characterized by their periodic length scale as well as the orientational ordering of their interfaces. By adding salt, the ordering of the domains disappears and the mixture macroscopically phase segregates in agreement with analytical predictions.
Collapse
Affiliation(s)
- Sharon M Loverde
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, USA
| | | | | |
Collapse
|
26
|
Tarzia M, Coniglio A. Pattern formation and glassy phase in the phi4 theory with a screened electrostatic repulsion. PHYSICAL REVIEW LETTERS 2006; 96:075702. [PMID: 16606111 DOI: 10.1103/physrevlett.96.075702] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Indexed: 05/08/2023]
Abstract
We study analytically the structural properties of a system with a short-range attraction and a competing long-range screened repulsion. This model contains the essential features of the effective interaction potential among charged colloids in polymeric solutions and provides novel insights on the equilibrium phase diagram of these systems. Within the self-consistent Hartree approximation and by using a replica approach, we show that varying the parameters of the repulsive potential and the temperature yields a phase coexistence, a lamellar, and a glassy phase. Our results strongly suggest that the cluster phase observed in charged colloids might be the signature of an underlying equilibrium lamellar phase, hidden on experimental time scales.
Collapse
Affiliation(s)
- Marco Tarzia
- Dipartimento di Scienze Fisiche, INFN sezione di Napoli, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, via Cinthia, 80126 Napoli, Italy
| | | |
Collapse
|
27
|
Pimenov AV, Boris AV, Yu L, Hinkov V, Wolf T, Tallon JL, Keimer B, Bernhard C. Nickel impurity-induced enhancement of the pseudogap of cuprate high-T(c) superconductors. PHYSICAL REVIEW LETTERS 2005; 94:227003. [PMID: 16090428 DOI: 10.1103/physrevlett.94.227003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Indexed: 05/03/2023]
Abstract
The influence of magnetic Ni and nonmagnetic Zn impurities on the normal-state pseudogap (PG) in the c-axis optical conductivity of (Sm,Nd)Ba(2){Cu(1-y)(Ni,Zn)(y)}(3)O(7-delta) crystals was studied by spectral ellipsometry. We find that these impurities, which strongly suppress superconductivity, have a profoundly different impact on the PG. Zn gives rise to a gradual and inhomogeneous PG suppression while Ni strongly enhances the PG. Our results challenge theories that relate the PG either to precursor superconductivity or to other phases with exotic order parameters, such as flux phase or d-density wave states, that should be suppressed by potential scattering. The apparent difference between magnetic and nonmagnetic impurities instead points towards an important role of magnetic correlations in the PG state.
Collapse
Affiliation(s)
- A V Pimenov
- Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mertelj T, Kabanov VV, Mihailovic D. Charged particles on a two-dimensional lattice subject to anisotropic Jahn-Teller interactions. PHYSICAL REVIEW LETTERS 2005; 94:147003. [PMID: 15904096 DOI: 10.1103/physrevlett.94.147003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Indexed: 05/02/2023]
Abstract
The properties of a system of charged particles on a 2D lattice, subject to an anisotropic Jahn-Teller-type interaction and 3D Coulomb repulsion, are investigated. In the mean-field approximation without Coulomb interaction, the system displays a phase transition of first order. When the long-range Coulomb interaction is included, Monte Carlo simulations show that the system displays very diverse mesoscopic textures, ranging from spatially disordered pairs to ordered arrays of stripes, or charged clusters, depending only on the ratio of the two interactions (and the particle density). Remarkably, charged objects with an even number of particles are more stable than with an odd number of particles. We suggest that the diverse functional behavior-including superconductivity-observed in oxides can be thought to arise from the self-organization of this type.
Collapse
Affiliation(s)
- T Mertelj
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
29
|
Mossa S, Sciortino F, Tartaglia P, Zaccarelli E. Ground-state clusters for short-range attractive and long-range repulsive potentials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:10756-63. [PMID: 15544413 DOI: 10.1021/la048554t] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report calculations of the ground-state energies and geometries for clusters of different sizes (up to 80 particles), where individual particles interact simultaneously via a short-ranged attractive potential, modeled with a generalization of the Lennard-Jones potential, and a long-ranged repulsive Yukawa potential. We show that for specific choices of the parameters of the repulsive potential, the ground-state energy per particle has a minimum at a finite cluster size. For these values of the parameters in the thermodynamic limit, at low temperatures and small packing fractions, where clustering is favored and cluster-cluster interactions can be neglected, thermodynamically stable cluster phases can be formed. The analysis of the ground-state geometries shows that the spherical shape is marginally stable. In the majority of the studied cases, we find that above a certain size, ground-state clusters preferentially grow almost in one dimension.
Collapse
Affiliation(s)
- S Mossa
- Dipartimento di Fisica and INFM Udr and SOFT, Complex Dynamics in Structured Systems, Università di Roma La Sapienza, P.le A. Moro 2, I-00185, Roma, Italy.
| | | | | | | |
Collapse
|
30
|
Abbamonte P, Blumberg G, Rusydi A, Gozar A, Evans PG, Siegrist T, Venema L, Eisaki H, Isaacs ED, Sawatzky GA. Crystallization of charge holes in the spin ladder of Sr14Cu24O41. Nature 2004; 431:1078-81. [PMID: 15510143 DOI: 10.1038/nature02925] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 08/06/2004] [Indexed: 11/09/2022]
Abstract
Determining the nature of the electronic phases that compete with superconductivity in high-transition-temperature (high-T(c)) superconductors is one of the deepest problems in condensed matter physics. One candidate is the 'stripe' phase, in which the charge carriers (holes) condense into rivers of charge that separate regions of antiferromagnetism. A related but lesser known system is the 'spin ladder', which consists of two coupled chains of magnetic ions forming an array of rungs. A doped ladder can be thought of as a high-T(c) material with lower dimensionality, and has been predicted to exhibit both superconductivity and an insulating 'hole crystal' phase in which the carriers are localized through many-body interactions. The competition between the two resembles that believed to operate between stripes and superconductivity in high-T(c) materials. Here we report the existence of a hole crystal in the doped spin ladder of Sr14Cu24O41 using a resonant X-ray scattering technique. This phase exists without a detectable distortion in the structural lattice, indicating that it arises from many-body electronic effects. Our measurements confirm theoretical predictions, and support the picture that proximity to charge ordered states is a general property of superconductivity in copper oxides.
Collapse
Affiliation(s)
- P Abbamonte
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pryadko LP, Kivelson SA, Zachar O. Incipient order in the t-J model at high temperatures. PHYSICAL REVIEW LETTERS 2004; 92:067002. [PMID: 14995263 DOI: 10.1103/physrevlett.92.067002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Indexed: 05/24/2023]
Abstract
We analyze the high-temperature behavior of the susceptibilities towards a number of possible ordered states in the t-J-V model using the high-temperature series expansion. From all diagrams with up to ten edges, reliable results are obtained down to temperatures of order J, or (with some optimism) to J/2. In the unphysical regime, t<J, large superconducting susceptibilities are found which, moreover, increase with decreasing temperatures, but for t>J, these susceptibilities are small and decreasing with decreasing temperature; this suggests that the t-J model does not support high-temperature superconductivity. We also find modest evidence of a tendency toward nematic and d-density wave orders.
Collapse
Affiliation(s)
- Leonid P Pryadko
- Department of Physics, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
32
|
Kumar N, Rao CNR. Stripes and superconductivity in cuprates--is there a connection? Chemphyschem 2003; 4:439-44. [PMID: 12785257 DOI: 10.1002/cphc.200200601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- N Kumar
- Raman Research Institute, Bangalore 560 080, India
| | | |
Collapse
|
33
|
Muratov CB. Theory of domain patterns in systems with long-range interactions of Coulomb type. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 66:066108. [PMID: 12513348 DOI: 10.1103/physreve.66.066108] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2002] [Indexed: 05/24/2023]
Abstract
We develop a theory of the domain patterns in systems with competing short-range attractive interactions and long-range repulsive Coulomb interactions. We take an energetic approach, in which patterns are considered as critical points of a mean-field free energy functional. Close to the microphase separation transition, this functional takes on a universal form, allowing us to treat a number of diverse physical situations within a unified framework. We use asymptotic analysis to study domain patterns with sharp interfaces. We derive an interfacial representation of the pattern's free energy which remains valid in the fluctuating system, with a suitable renormalization of the Coulomb interaction's coupling constant. We also derive integro-differential equations describing stationary domain patterns of arbitrary shapes and their thermodynamic stability, coming from the first and second variations of the interfacial free energy. We show that the length scale of a stable domain pattern must obey a certain scaling law with the strength of the Coulomb interaction. We analyzed the existence and stability of localized (spots, stripes, annuli) and periodic (lamellar, hexagonal) patterns in two dimensions. We show that these patterns are metastable in certain ranges of the parameters and that they can undergo morphological instabilities leading to the formation of more complex patterns. We discuss nucleation of the domain patterns by thermal fluctuations and pattern formation scenarios for various thermal quenches. We argue that self-induced disorder is an intrinsic property of the domain patterns in the systems under consideration.
Collapse
Affiliation(s)
- C B Muratov
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark 07102, USA.
| |
Collapse
|
34
|
Ohtomo A, Muller DA, Grazul JL, Hwang HY. Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature 2002; 419:378-80. [PMID: 12353030 DOI: 10.1038/nature00977] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2002] [Accepted: 07/12/2002] [Indexed: 11/08/2022]
Abstract
The nature and length scales of charge screening in complex oxides are fundamental to a wide range of systems, spanning ceramic voltage-dependent resistors (varistors), oxide tunnel junctions and charge ordering in mixed-valence compounds. There are wide variations in the degree of charge disproportionation, length scale, and orientation in the mixed-valence compounds: these have been the subject of intense theoretical study, but little is known about the microscopic electronic structure. Here we have fabricated an idealized structure to examine these issues by growing atomically abrupt layers of LaTi(3+)O(3) embedded in SrTi(4+)O(3). Using an atomic-scale electron beam, we have observed the spatial distribution of the extra electron on the titanium sites. This distribution results in metallic conductivity, even though the superlattice structure is based on two insulators. Despite the chemical abruptness of the interfaces, we find that a minimum thickness of five LaTiO(3) layers is required for the centre titanium site to recover bulk-like electronic properties. This represents a framework within which the short-length-scale electronic response can be probed and incorporated in thin-film oxide heterostructures.
Collapse
Affiliation(s)
- A Ohtomo
- Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
| | | | | | | |
Collapse
|
35
|
Lorenzana J, Seibold G. Metallic mean-field stripes, incommensurability, and chemical potential in cuprates. PHYSICAL REVIEW LETTERS 2002; 89:136401. [PMID: 12225044 DOI: 10.1103/physrevlett.89.136401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2002] [Indexed: 05/23/2023]
Abstract
We perform a systematic slave-boson mean-field analysis of the three-band model for cuprates with first-principle parameters. Contrary to widespread belief based on earlier mean-field computations low doping stripes have a linear density close to 1/2 added hole per lattice constant. We find a dimensional crossover from 1D to 2D at doping approximately 0.1 followed by a breaking of particle-hole symmetry around doping 1/8 as doping increases. Our results explain in a simple way the behavior of the chemical potential, the magnetic incommensurability, and transport experiments as a function of doping. Bond centered and site-centered stripes become degenerate for small overdoping.
Collapse
Affiliation(s)
- J Lorenzana
- Comisión Nacional de Energía Atómica, Centro Atómico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche, Argentina
| | | |
Collapse
|
36
|
Grousson M, Krakoviack V, Tarjus G, Viot P. Langevin dynamics of the Coulomb frustrated ferromagnet: A mode-coupling analysis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 66:026126. [PMID: 12241256 DOI: 10.1103/physreve.66.026126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Indexed: 05/23/2023]
Abstract
We study the Langevin dynamics of the soft-spin, continuum version of the Coulomb-frustrated Ising ferromagnet. By using the dynamical mode-coupling approximation, supplemented by reasonable approximations for describing the equilibrium static correlation function, and the somewhat improved dynamical self-consistent screening approximation, we find that the system displays a transition from an ergodic to a nonergodic behavior. This transition is similar to that obtained in the idealized mode-coupling theory of glass-forming liquids and in the mean-field generalized spin glasses with one-step replica symmetry breaking. The significance of this result and the relation to the appearance of a complex free-energy landscape are also discussed.
Collapse
Affiliation(s)
- M Grousson
- Laboratoire de Physique Théorique des Liquides, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | |
Collapse
|
37
|
Abbamonte P, Venema L, Rusydi A, Sawatzky GA, Logvenov G, Bozovic I. A structural probe of the doped holes in cuprate superconductors. Science 2002; 297:581-4. [PMID: 12142531 DOI: 10.1126/science.1070903] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An unresolved issue concerning cuprate superconductors is whether the distribution of carriers in the CuO2 plane is uniform or inhomogeneous. Because the carriers comprise a small fraction of the total charge density and may be rapidly fluctuating, modulations are difficult to detect directly. We demonstrate that in anomalous x-ray scattering at the oxygen K edge of the cuprates, the contribution of carriers to the scattering amplitude is selectively magnified 82 times. This enhances diffraction from the doped holes by more than 10(3), permitting direct structural analysis of the superconducting ground state. Scattering from thin films of La2CuO4+delta (superconducting transition temperature = 39 K) at temperature = 50 +/- 5 kelvin on the reciprocal space intervals (0,0,0.21) --> (0,0,1.21) and (0,0,0.6) --> (0.3,0,0.6) shows a rounding of the carrier density near the substrate suggestive of a depletion zone or similar effect. The structure factor for off-specular scattering was less than 3 x 10(-7) electrons, suggesting an absence of in-plane hole ordering in this material.
Collapse
Affiliation(s)
- P Abbamonte
- Materials Science Centre, University of Groningen, 9747 AG Groningen, Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Hoffman JE, Hudson EW, Lang KM, Madhavan V, Eisaki H, Uchida S, Davis JC. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+delta. Science 2002; 295:466-9. [PMID: 11799234 DOI: 10.1126/science.1066974] [Citation(s) in RCA: 733] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Scanning tunneling microscopy is used to image the additional quasi-particle states generated by quantized vortices in the high critical temperature superconductor Bi2Sr2CaCu2O8+delta. They exhibit a copper-oxygen bond-oriented "checkerboard" pattern, with four unit cell (4a0) periodicity and a approximately 30 angstrom decay length. These electronic modulations may be related to the magnetic field-induced, 8a0 periodic, spin density modulations with decay length of approximately 70 angstroms recently discovered in La1.84Sr0.16CuO4. The proposed explanation is a spin density wave localized surrounding each vortex core. General theoretical principles predict that, in the cuprates, a localized spin modulation of wavelength lambda should be associated with a corresponding electronic modulation of wavelength lambda/2, in good agreement with our observations.
Collapse
Affiliation(s)
- J E Hoffman
- Department of Physics, University of California, Berkeley, CA 94720-7300, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Grousson M, Tarjus G, Viot P. Phase diagram of an ising model with long-range frustrating interactions: A theoretical analysis. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 62:7781-7792. [PMID: 11138054 DOI: 10.1103/physreve.62.7781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Indexed: 05/23/2023]
Abstract
We present a theoretical study of the phase diagram of a frustrated Ising model with nearest-neighbor ferromagnetic interactions and long-range (Coulombic) antiferromagnetic interactions. For nonzero frustration, long-range ferromagnetic order is forbidden, and the ground state of the system consists of phases characterized by periodically modulated structures. At finite temperatures, the phase diagram is calculated within the mean-field approximation. Below the transition line that separates the disordered and the ordered phases, the frustration-temperature phase diagram displays an infinite number of "flowers," each flower being made by an infinite number of modulated phases generated by structure combination branching processes. The specificities introduced by the long-range nature of the frustrating interaction and the limitation of the mean-field approach are finally discussed.
Collapse
Affiliation(s)
- M Grousson
- Laboratoire de Physique Theorique des Liquides, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
| | | | | |
Collapse
|
40
|
Peng LM, Dong ZF, Dong XL, Zhao BR, Duan XF, Zhao ZX. Incommensurate valence modulation in high-Tc cuprates. Micron 2000; 31:551-7. [PMID: 10831301 DOI: 10.1016/s0968-4328(99)00137-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An incommensurate modulation has been observed in a Cu-rich La2CuO4.003 crystal. It is shown that the modulation results from a periodically distributed holes lying on the CuO2 planes, and that the hole modulation may be regarded to be a kind of valence modulation. It is shown that appreciable valence modulation contrast may be generated by the mechanisms of hole scattering alone when the period of the modulation is of the order of 2 nm.
Collapse
Affiliation(s)
- LM Peng
- Beijing Laboratory of Electron Microscopy, Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The high-temperature copper oxide superconductors are of fundamental and enduring interest. They not only manifest superconducting transition temperatures inconceivable 15 years ago, but also exhibit many other properties apparently incompatible with conventional metal physics. The materials expand our notions of what is possible, and compel us to develop new experimental techniques and theoretical concepts. This article provides a perspective on recent developments and their implications for our understanding of interacting electrons in metals.
Collapse
Affiliation(s)
- J Orenstein
- Department of Physics, University of California, Berkeley, CA 94720, USA, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Department of Physics and Astronomy, Rutgers University, Piscataway, NJ
| | | |
Collapse
|
42
|
Introduction to Electronic States in Oxides and an Overview of Transport Properties. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/978-3-662-04011-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Emery VJ, Kivelson SA, Tranquada JM. Stripe phases in high-temperature superconductors. Proc Natl Acad Sci U S A 1999; 96:8814-7. [PMID: 10430848 PMCID: PMC33690 DOI: 10.1073/pnas.96.16.8814] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stripe phases are predicted and observed to occur in a class of strongly correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representatives. The existence of stripe correlations necessitates the development of new principles for describing charge transport and especially superconductivity in these materials.
Collapse
Affiliation(s)
- V J Emery
- Department of Physics, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | | | | |
Collapse
|
44
|
Kivelson D, Tarjus G. The Kauzmann paradox interpreted via the theory of frustration- limited-domains. J Chem Phys 1998. [DOI: 10.1063/1.477166] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Perali A, Castellani C, Grilli M. d-wave superconductivity near charge instabilities. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:16216-16225. [PMID: 9985700 DOI: 10.1103/physrevb.54.16216] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
46
|
Becca F, Tarquini M, Grilli M. Charge-density waves and superconductivity as an alternative to phase separation in the infinite-U Hubbard-Holstein model. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:12443-12457. [PMID: 9985108 DOI: 10.1103/physrevb.54.12443] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
47
|
Tranquada JM, Buttrey DJ, Sachan V. Incommensurate stripe order in La2-xSrxNiO4 with x=0.225. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:12318-12323. [PMID: 9985094 DOI: 10.1103/physrevb.54.12318] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Tranquada JM, Axe JD, Ichikawa N, Nakamura Y, Uchida S, Nachumi B. Neutron-scattering study of stripe-phase order of holes and spins in La1.48Nd0.4Sr0.12CuO4. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:7489-7499. [PMID: 9984376 DOI: 10.1103/physrevb.54.7489] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Eskes H, Grimberg R, Zaanen J. Quantizing charged magnetic domain walls: Strings on a lattice. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:R724-R727. [PMID: 9985419 DOI: 10.1103/physrevb.54.r724] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
50
|
Salkola MI, Emery VJ, Kivelson SA. Implications of Charge Ordering for Single-Particle Properties of High-Tc Superconductors. PHYSICAL REVIEW LETTERS 1996; 77:155-158. [PMID: 10061795 DOI: 10.1103/physrevlett.77.155] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|