Filibian M, Carretta P, Mozzati MC, Ghigna P, Zoppellaro G, Ruben M. Strong electronic correlations in LixZnPc organic metals.
PHYSICAL REVIEW LETTERS 2008;
100:117601. [PMID:
18517827 DOI:
10.1103/physrevlett.100.117601]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Indexed: 05/26/2023]
Abstract
Nuclear magnetic resonance, electron paramagnetic resonance and magnetization measurements show that bulk LixZnPc are strongly correlated one-dimensional metals. The temperature dependence of the nuclear spin-lattice relaxation rate 1/T_{1} and of the static uniform susceptibility chi_{S} on approaching room temperature are characteristic of a Fermi liquid. Moreover, while for x approximately 2 the electrons are delocalized down to low temperature, for x-->4 a tendency towards localization is noticed upon cooling, yielding an increase both in 1/T_{1} and chi_{s}. The x dependence of the effective density of states at the Fermi level D(E_{F}) displays a sharp enhancement for x approximately 2, at the half filling of the ZnPc lowest unoccupied molecular orbitals. This suggests that LixZnPc is on the edge of a metal-insulator transition where enhanced superconducting fluctuations could develop.
Collapse