1
|
Kalha C, Fernando NK, Bhatt P, Johansson FOL, Lindblad A, Rensmo H, Medina LZ, Lindblad R, Siol S, Jeurgens LPH, Cancellieri C, Rossnagel K, Medjanik K, Schönhense G, Simon M, Gray AX, Nemšák S, Lömker P, Schlueter C, Regoutz A. Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:233001. [PMID: 33647896 DOI: 10.1088/1361-648x/abeacd] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Hard x-ray photoelectron spectroscopy (HAXPES) is establishing itself as an essential technique for the characterisation of materials. The number of specialised photoelectron spectroscopy techniques making use of hard x-rays is steadily increasing and ever more complex experimental designs enable truly transformative insights into the chemical, electronic, magnetic, and structural nature of materials. This paper begins with a short historic perspective of HAXPES and spans from developments in the early days of photoelectron spectroscopy to provide an understanding of the origin and initial development of the technique to state-of-the-art instrumentation and experimental capabilities. The main motivation for and focus of this paper is to provide a picture of the technique in 2020, including a detailed overview of available experimental systems worldwide and insights into a range of specific measurement modi and approaches. We also aim to provide a glimpse into the future of the technique including possible developments and opportunities.
Collapse
Affiliation(s)
- Curran Kalha
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Nathalie K Fernando
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Prajna Bhatt
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Fredrik O L Johansson
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Andreas Lindblad
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Håkan Rensmo
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - León Zendejas Medina
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121, Uppsala, Sweden
| | - Rebecka Lindblad
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121, Uppsala, Sweden
| | - Sebastian Siol
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Lars P H Jeurgens
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Claudia Cancellieri
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Kai Rossnagel
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Katerina Medjanik
- Johannes Gutenberg Universität, Institut für Physik, 55128 Mainz, Germany
| | - Gerd Schönhense
- Johannes Gutenberg Universität, Institut für Physik, 55128 Mainz, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Alexander X Gray
- Department of Physics, Temple University, Philadelphia, PA 19122, United States of America
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Patrick Lömker
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Anna Regoutz
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| |
Collapse
|
2
|
Miteva T, Kryzhevoi NV, Sisourat N, Nicolas C, Pokapanich W, Saisopa T, Songsiriritthigul P, Rattanachai Y, Dreuw A, Wenzel J, Palaudoux J, Öhrwall G, Püttner R, Cederbaum LS, Rueff JP, Céolin D. The All-Seeing Eye of Resonant Auger Electron Spectroscopy: A Study on Aqueous Solution Using Tender X-rays. J Phys Chem Lett 2018; 9:4457-4462. [PMID: 30020787 DOI: 10.1021/acs.jpclett.8b01783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
X-ray absorption and Auger electron spectroscopies are demonstrated to be powerful tools to unravel the electronic structure of solvated ions. In this work for the first time, we use a combination of these methods in the tender X-ray regime. This allowed us to address electronic transitions from deep core levels, to probe environmental effects, specifically in the bulk of the solution since the created energetic Auger electrons possess large mean free paths, and moreover, to obtain dynamical information about the ultrafast delocalization of the core-excited electron. In the considered exemplary aqueous KCl solution, the solvated isoelectronic K+ and Cl- ions exhibit notably different Auger electron spectra as a function of the photon energy. Differences appear due to dipole-forbidden transitions in aqueous K+ whose occurrence, according to the performed ab initio calculations, becomes possible only in the presence of solvent water molecules.
Collapse
Affiliation(s)
- Tsveta Miteva
- Sorbonne Université, CNRS , Laboratoire de Chimie Physique - Matière et Rayonnement, UMR 7614 , F-75005 Paris , France
| | - Nikolai V Kryzhevoi
- Theoretische Chemie, Physikalisch-Chemisches Institut , Heidelberg University , Im Neuenheimer Feld 229 , D-69120 Heidelberg , Germany
| | - Nicolas Sisourat
- Sorbonne Université, CNRS , Laboratoire de Chimie Physique - Matière et Rayonnement, UMR 7614 , F-75005 Paris , France
| | - Christophe Nicolas
- Synchrotron SOLEIL , l'Orme des Merisiers, Saint-Aubin, F-91192 Cedex Gif-sur-Yvette , France
| | - Wandared Pokapanich
- Faculty of Science , Nakhon Phanom University , Nakhon Phanom 48000 , Thailand
| | - Thanit Saisopa
- School of Physics , Suranaree University of Technology , Nakhon Ratchasima 30000 , Thailand
| | | | - Yuttakarn Rattanachai
- Department of Applied Physics, Faculty of Sciences and Liberal Arts , Rajamangala University of Technology Isan , Nakhon Ratchasima 30000 , Thailand
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing , Heidelberg University , Im Neuenheimer Feld 205A , D-69120 Heidelberg , Germany
| | - Jan Wenzel
- Interdisciplinary Center for Scientific Computing , Heidelberg University , Im Neuenheimer Feld 205A , D-69120 Heidelberg , Germany
| | - Jérôme Palaudoux
- Sorbonne Université, CNRS , Laboratoire de Chimie Physique - Matière et Rayonnement, UMR 7614 , F-75005 Paris , France
| | - Gunnar Öhrwall
- MAX IV Laboratory , Lund University , P.O. Box 118, SE-22100 Lund , Sweden
| | - Ralph Püttner
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , D-14195 Berlin , Germany
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut , Heidelberg University , Im Neuenheimer Feld 229 , D-69120 Heidelberg , Germany
| | - Jean-Pascal Rueff
- Sorbonne Université, CNRS , Laboratoire de Chimie Physique - Matière et Rayonnement, UMR 7614 , F-75005 Paris , France
- Synchrotron SOLEIL , l'Orme des Merisiers, Saint-Aubin, F-91192 Cedex Gif-sur-Yvette , France
| | - Denis Céolin
- Synchrotron SOLEIL , l'Orme des Merisiers, Saint-Aubin, F-91192 Cedex Gif-sur-Yvette , France
| |
Collapse
|
3
|
Nisoli M, Decleva P, Calegari F, Palacios A, Martín F. Attosecond Electron Dynamics in Molecules. Chem Rev 2017; 117:10760-10825. [DOI: 10.1021/acs.chemrev.6b00453] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mauro Nisoli
- Department
of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM- CNR, 34127 Trieste, Italy
| | - Francesca Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alicia Palacios
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
4
|
Adak O, Kladnik G, Bavdek G, Cossaro A, Morgante A, Cvetko D, Venkataraman L. Ultrafast Bidirectional Charge Transport and Electron Decoherence at Molecule/Surface Interfaces: A Comparison of Gold, Graphene, and Graphene Nanoribbon Surfaces. NANO LETTERS 2015; 15:8316-21. [PMID: 26574713 DOI: 10.1021/acs.nanolett.5b03962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We investigate bidirectional femtosecond charge transfer dynamics using the core-hole clock implementation of resonant photoemission spectroscopy from 4,4'-bipyridine molecular layers on three different surfaces: Au(111), epitaxial graphene on Ni(111), and graphene nanoribbons. We show that the lowest unoccupied molecular orbital (LUMO) of the molecule drops partially below the Fermi level upon core-hole creation in all systems, opening an additional decay channel for the core-hole, involving electron donation from substrate to the molecule. Furthermore, using the core-hole clock method, we find that the bidirectional charge transfer time between the substrate and the molecule is fastest on Au(111), with a 2 fs time, then around 4 fs for epitaxial graphene and slowest with graphene nanoribbon surface, taking around 10 fs. Finally, we provide evidence for fast phase decoherence of the core-excited LUMO* electron through an interaction with the substrate providing the first observation of such a fast bidirectional charge transfer across an organic/graphene interface.
Collapse
Affiliation(s)
- Olgun Adak
- Department of Applied Physics and Applied Mathematics, Columbia University , New York, New York 10027, United States
| | - Gregor Kladnik
- Faculty of Mathematics and Physics, University of Ljubljana , Ljubljana, Slovenia
- Department of Physics, University of Trieste , Trieste, Italy
| | - Gregor Bavdek
- Faculty of Education, University of Ljubljana , Ljubljana, Slovenia
| | - Albano Cossaro
- CNR-IOM Laboratorio Nazionale TASC , Basovizza SS-14, km 163.5, I-34012 Trieste, Italy
| | - Alberto Morgante
- Department of Physics, University of Trieste , Trieste, Italy
- CNR-IOM Laboratorio Nazionale TASC , Basovizza SS-14, km 163.5, I-34012 Trieste, Italy
| | - Dean Cvetko
- Faculty of Mathematics and Physics, University of Ljubljana , Ljubljana, Slovenia
- CNR-IOM Laboratorio Nazionale TASC , Basovizza SS-14, km 163.5, I-34012 Trieste, Italy
| | - Latha Venkataraman
- Department of Applied Physics and Applied Mathematics, Columbia University , New York, New York 10027, United States
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| |
Collapse
|
5
|
Suljoti E, Garcia-Diez R, Bokarev SI, Lange KM, Schoch R, Dierker B, Dantz M, Yamamoto K, Engel N, Atak K, Kühn O, Bauer M, Rubensson JE, Aziz EF. Direct observation of molecular orbital mixing in a solvated organometallic complex. Angew Chem Int Ed Engl 2013; 52:9841-4. [PMID: 23881875 DOI: 10.1002/anie.201303310] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Edlira Suljoti
- Joint Ultrafast Dynamics Lab in Solutions and at Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Suljoti E, Garcia-Diez R, Bokarev SI, Lange KM, Schoch R, Dierker B, Dantz M, Yamamoto K, Engel N, Atak K, Kühn O, Bauer M, Rubensson JE, Aziz EF. Direkte Untersuchung von Orbitalwechselwirkungen in gelösten metallorganischen Komplexen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Mårtensson N, Söderstrom J, Svensson S, Travnikova O, Patanen M, Miron C, Sæthre LJ, Børve KJ, Thomas TD, Kas JJ, Vila FD, Rehr JJ. On the relation between X-ray Photoelectron Spectroscopy and XAFS. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/430/1/012131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
|
9
|
Petek H. Photoexcitation of adsorbates on metal surfaces: one-step or three-step. J Chem Phys 2013; 137:091704. [PMID: 22957546 DOI: 10.1063/1.4746801] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this essay we discuss the light-matter interactions at molecule-covered metal surfaces that initiate surface photochemistry. The hot-electron mechanism for surface photochemistry, whereby the absorption of light by a metal surface creates an electron-hole pair, and the hot electron scatters through an unoccupied resonance of adsorbate to initiate nuclear dynamics leading to photochemistry, has become widely accepted. Yet, ultrafast spectroscopic measurements of molecule-surface electronic structure and photoexcitation dynamics provide scant support for the hot electron mechanism. Instead, in most cases the adsorbate resonances are excited through photoinduced substrate-to-adsorbate charge transfer. Based on recent studies of the role of coherence in adsorbate photoexcitation, as measured by the optical phase and momentum resolved two-photon photoemission measurements, we examine critically the hot electron mechanism, and propose an alternative description based on direct charge transfer of electrons from the substrate to adsorbate. The advantage of this more quantum mechanically rigorous description is that it informs how material properties of the substrate and adsorbate, as well as their interaction, influence the frequency dependent probability of photoexcitation and ultimately how light can be used to probe and control surface femtochemistry.
Collapse
Affiliation(s)
- Hrvoje Petek
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
10
|
Quantifying through-space charge transfer dynamics in π-coupled molecular systems. Nat Commun 2013; 3:1086. [PMID: 23011140 DOI: 10.1038/ncomms2083] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/22/2012] [Indexed: 11/09/2022] Open
Abstract
Understanding the role of intermolecular interaction on through-space charge transfer characteristics in π-stacked molecular systems is central to the rational design of electronic materials. However, a quantitative study of charge transfer in such systems is often difficult because of poor control over molecular morphology. Here we use the core-hole clock implementation of resonant photoemission spectroscopy to study the femtosecond charge-transfer dynamics in cyclophanes, which consist of two precisely stacked π-systems held together by aliphatic chains. We study two systems, [2,2]paracyclophane (22PCP) and [4,4]paracyclophane (44PCP), with inter-ring separations of 3.0 and 4.0 Å, respectively. We find that charge transfer across the π-coupled system of 44PCP is 20 times slower than in 22PCP. We attribute this difference to the decreased inter-ring electronic coupling in 44PCP. These measurements illustrate the use of core-hole clock spectroscopy as a general tool for quantifying through-space coupling in π-stacked systems.
Collapse
|
11
|
Wernet P, Kunnus K, Schreck S, Quevedo W, Kurian R, Techert S, de Groot FMF, Odelius M, Föhlisch A. Dissecting Local Atomic and Intermolecular Interactions of Transition-Metal Ions in Solution with Selective X-ray Spectroscopy. J Phys Chem Lett 2012; 3:3448-3453. [PMID: 26290971 DOI: 10.1021/jz301486u] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Determining covalent and charge-transfer contributions to bonding in solution has remained an experimental challenge. Here, the quenching of fluorescence decay channels as expressed in dips in the L-edge X-ray spectra of solvated 3d transition-metal ions and complexes was reported as a probe. With a full set of experimental and theoretical ab initio L-edge X-ray spectra of aqueous Cr(3+), including resonant inelastic X-ray scattering, we address covalency and charge transfer for this prototypical transition-metal ion in solution. We dissect local atomic effects from intermolecular interactions and quantify X-ray optical effects. We find no evidence for the asserted ultrafast charge transfer to the solvent and show that the dips are readily explained by X-ray optical effects and local atomic state dependence of the fluorescence yield. Instead, we find, besides ionic interactions, a covalent contribution to the bonding in the aqueous complex of ligand-to-metal charge-transfer character.
Collapse
Affiliation(s)
- Philippe Wernet
- †Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Kristjan Kunnus
- †Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- ‡Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - Simon Schreck
- †Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- ‡Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | - Wilson Quevedo
- †Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | | | - Simone Techert
- #Structural Dynamics of (Bio)chemical Systems, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany
| | | | - Michael Odelius
- ∥Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Alexander Föhlisch
- †Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- ‡Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| |
Collapse
|
12
|
On the absence of resonance in the valence band photoemission at L2 resonance edge and the delayed onset of the normal Auger-decay. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.04.077] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Menzel D. Ultrafast charge transfer at surfaces accessed by core electron spectroscopies. Chem Soc Rev 2008; 37:2212-23. [DOI: 10.1039/b719546j] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Nordlund D, Ogasawara H, Bluhm H, Takahashi O, Odelius M, Nagasono M, Pettersson LGM, Nilsson A. Probing the electron delocalization in liquid water and ice at attosecond time scales. PHYSICAL REVIEW LETTERS 2007; 99:217406. [PMID: 18233257 DOI: 10.1103/physrevlett.99.217406] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Indexed: 05/23/2023]
Abstract
We determine electron delocalization rates in liquid water and ice using core-hole decay spectroscopy. The hydrogen-bonded network delocalizes the electrons in less than 500 as. Broken or weak hydrogen bonds--in the liquid or at the surface of ice--provide states where the electron remains localized longer than 20 fs. These asymmetrically bonded water species provide electron traps, acting as a strong precursor channel to the hydrated electron.
Collapse
Affiliation(s)
- D Nordlund
- Stanford Synchrotron Radiation Laboratory, P.O. Box 20450 Stanford, California 94309, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Deppe M, Föhlisch A, Hennies F, Nagasono M, Beye M, Sánchez-Portal D, Echenique PM, Wurth W. Ultrafast charge transfer and atomic orbital polarization. J Chem Phys 2007; 127:174708. [DOI: 10.1063/1.2781395] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Föhlisch A, Vijayalakshmi S, Hennies F, Wurth W, Medicherla V, Drube W. Verification of the core-hole-clock method using two different time references: Attosecond charge transfer in c(4×2)S/Ru(0001). Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2006.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Chulkov EV, Borisov AG, Gauyacq JP, Sanchez-Portal D, Silkin VM, Zhukov VP, Echenique PM. Electronic Excitations in Metals and at Metal Surfaces. Chem Rev 2006; 106:4160-206. [PMID: 17031983 DOI: 10.1021/cr050166o] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E V Chulkov
- Departamento de Física de Materiales and Centro Mixto CSIC-UPV/EHU, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU, Apdo. 1072, 20080 San Sebastian/Donostia, Basque Country, Spain.
| | | | | | | | | | | | | |
Collapse
|
19
|
Vijayalakshmi S, Föhlisch A, Hennies F, Pietzsch A, Nagasono M, Wurth W, Borisov A, Gauyacq J. Surface projected electronic band structure and adsorbate charge transfer dynamics: Ar adsorbed on Cu(111) and Cu(100). Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.06.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Schnadt J, O’Shea JN, Patthey L, Kjeldgaard L, Åhlund J, Nilson K, Schiessling J, Krempaský J, Shi M, Karis O, Glover C, Siegbahn H, Mårtensson N, Brühwiler PA. Excited-state charge transfer dynamics in systems of aromatic adsorbates on TiO2 studied with resonant core techniques. J Chem Phys 2003. [DOI: 10.1063/1.1586692] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Tchaplyguine M, Feifel R, Marinho R, Gisselbrecht M, Sorensen S, Naves de Brito A, Mårtensson N, Svensson S, Björneholm O. Selective probing of the electronic structure of free clusters using resonant core-level spectroscopy. Chem Phys 2003. [DOI: 10.1016/s0301-0104(02)00619-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Föhlisch A, Menzel D, Feulner P, Ecker M, Weimar R, Kostov K, Tyuliev G, Lizzit S, Larciprete R, Hennies F, Wurth W. Energy dependence of resonant charge transfer from adsorbates to metal substrates. Chem Phys 2003. [DOI: 10.1016/s0301-0104(02)00939-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Parent P, Laffon C, Bournel F. Core-induced photofragmentation of acetonitrile adsorbed on Au(111) and Pt(111). J Chem Phys 2000. [DOI: 10.1063/1.480724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
|
25
|
Nitrogen and oxygen core excitations in solid NaNO2 studied by X-ray absorption and resonant photoemission. Chem Phys 1999. [DOI: 10.1016/s0301-0104(99)00287-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Puglia C, Brühwiler PA, Hasselström J, Bennich P, Nilsson A, Mårtensson N. New final state in the autoionization decay detected for N2/(2×2)K/graphite: Relevance for the affinity level of NO on a K monolayer. J Chem Phys 1998. [DOI: 10.1063/1.476671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Takata Y, Nakamura M, Kosugi N. Resonant behavior of satellite photoelectrons in the Ni 3p and 3s region at the Ni 2p excitation of K2Ni(CN)4. Chem Phys Lett 1998. [DOI: 10.1016/s0009-2614(98)00140-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
Piancastelli MN, Neeb M, Kivimäki A, Kempgens B, Köppe HM, Maier K, Bradshaw AM. Variation of Cross-Section Enhancement in Decay Spectra of CO under Resonant Raman Conditions. PHYSICAL REVIEW LETTERS 1996; 77:4302-4305. [PMID: 10062504 DOI: 10.1103/physrevlett.77.4302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
29
|
Gel’mukhanov F, Yang L, Ågren H. Theory of x‐ray emission of conjugated molecules. J Chem Phys 1996. [DOI: 10.1063/1.472365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|