Papakonstantinou T, Malakis A. Critical behavior of the three-dimensional Ising model with anisotropic bond randomness at the ferromagnetic-paramagnetic transition line.
PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013;
87:012132. [PMID:
23410308 DOI:
10.1103/physreve.87.012132]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/22/2012] [Indexed: 06/01/2023]
Abstract
We study the ±J three-dimensional (3D) Ising model with a spatially uniaxial anisotropic bond randomness on the simple cubic lattice. The ±J random exchange is applied on the xy planes, whereas, in the z direction, only a ferromagnetic exchange is used. After sketching the phase diagram and comparing it with the corresponding isotropic case, the system is studied at the ferromagnetic-paramagnetic transition line using parallel tempering and a convenient concentration of antiferromagnetic bonds (p(z)=0;p(xy)=0.176). The numerical data clearly point out a second-order ferromagnetic-paramagnetic phase transition belonging in the same universality class with the 3D random Ising model. The smooth finite-size behavior of the effective exponents, describing the peaks of the logarithmic derivatives of the order parameter, provides an accurate estimate of the critical exponent 1/ν=1.463(3), and a collapse analysis of magnetization data gives an estimate of β/ν=0.516(7). These results are in agreement with previous papers and, in particular, with those of the isotropic ±J three-dimensional Ising model at the ferromagnetic-paramagnetic transition line, indicating the irrelevance of the introduced anisotropy.
Collapse