1
|
Wang Z, Sun J, Wu C, Li J, Wang L, Zhang Y, Li Z, Zheng X, Wen L. Plasmonic Bound States in the Continuum Metasurface-Semiconductor-Metal Architecture Enables Efficient Hot-Electron-Based Photodetector. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32836-32846. [PMID: 38874560 DOI: 10.1021/acsami.4c03770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Plasmonic hot-electron-based photodetectors (HEB-PDs) have received widespread attention for their ability to realize effective carrier collection under sub-bandgap illumination. However, due to the low hot electron emission probability, most of the existing HEB-PDs exhibit poor responsivity, which significantly restricts their practical applications. Here, by employing the binary-pore anodic alumina oxide template technique, we proposed a compact plasmonic bound state in continuum metasurface-semiconductor-metal-based (BIC M-S-M) HEB-PD. The symmetry-protected BIC can manipulate a strong gap surface plasmon in the stacked M-S-M structure, which effectively enhances light-matter interactions and improves the photoresponse of the integrated device. Notably, the optimal M-S-M HEB-PD with near-unit absorption (∼90%) around 800 nm delivers a responsivity of 5.18 A/W and an IPCE of 824.23% under 780 nm normal incidence (1 V external bias). Moreover, the ultrathin feature of BIC M-S-M (∼150 nm) on the flexible substrate demonstrates excellent stability under a wide range of illumination angles from -40° to 40° and at the curvature surface from 0.05 to 0.13 mm-1. The proposed plasmonic BIC strategy is very promising for many other hot-electron-related fields, such as photocatalysis, biosensing, imaging, and so on.
Collapse
Affiliation(s)
- Zichen Wang
- Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| | - Jiacheng Sun
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Westlake Institute for Optoelectronics, Westlake University, 68 Jiangnan Rd, Hangzhou, Zhejiang 311421, People's Republic of China
| | - Chenbo Wu
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| | - Jiye Li
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| | - Lang Wang
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| | - Yuyu Zhang
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| | - Zishun Li
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| | - Xiaorui Zheng
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Westlake Institute for Optoelectronics, Westlake University, 68 Jiangnan Rd, Hangzhou, Zhejiang 311421, People's Republic of China
| | - Liaoyong Wen
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Westlake Institute for Optoelectronics, Westlake University, 68 Jiangnan Rd, Hangzhou, Zhejiang 311421, People's Republic of China
| |
Collapse
|
2
|
Shibuta M, Nakajima A. Two-Photon Photoemission Spectroscopy and Microscopy for Electronic and Plasmonic Characterizations of Molecularly Designed Organic Surfaces. J Phys Chem Lett 2023; 14:3285-3295. [PMID: 36988100 DOI: 10.1021/acs.jpclett.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Functional surfaces decorated with organic molecules and/or nanoclusters (NCs) composed of several tens of atoms are promising for use in future photoelectronic substrates, whose functionalities are governed by molecular local electronic/plasmonic excitations at the interfaces. Here, we combine two-photon photoemission spectroscopy (2P-PES) and microscopy (2P-PEEM) to investigate the local excited-state dynamics at organic surfaces functionalized with NCs. The 2P-PES and 2P-PEEM for organic fullerene (C60) layers on graphite and Au substrates demonstrated photophysical characterization of electronic and plasmonic properties, including propagating surface plasmon polaritons (SPPs). The SPP propagation at the Au interface buried by overlayered C60 can be visualized by Agn NC deposition, which enhances plasmon-induced hot electrons, where the threshold number of Ag atoms (n ≥ 9) for the plasmonic response is revealed by the size dependence of 2P-PES for Agn NCs on C60 layers.
Collapse
Affiliation(s)
- Masahiro Shibuta
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Atsushi Nakajima
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
3
|
Iwe N, Raspe K, Martinez F, Schweikhard L, Meiwes-Broer KH, Tiggesbäumker J. Metal cluster plasmons analyzed by energy-resolved photoemission. Phys Chem Chem Phys 2023; 25:1677-1684. [PMID: 36541268 DOI: 10.1039/d2cp03830g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The optical response of size-selected metal clusters is studied by wavelength-dependent photoemission and energy-resolved photoelectron detection. Relative photodetachment cross sections giving information on the plasmon are determined for the example of closed-shell Ag91-. Notably, the peak energy of this anion (3.74 eV) is higher than the small particle limit in Mie theory of 3.5 eV. Different methods to extract cross sections from the spectra are applied. In particular, we compare the results obtained by integrating the full electron yields to analyses based on evaluating specified binding energy windows. The approach opens up new possibilities to conduct studies on Landau fragmentation as a result of multielectron excitations.
Collapse
Affiliation(s)
- N Iwe
- Institute of Physics, University of Rostock, 18059, Rostock, Germany.
| | - K Raspe
- Institute of Physics, University of Rostock, 18059, Rostock, Germany.
| | - F Martinez
- Institute of Physics, University of Rostock, 18059, Rostock, Germany.
| | - L Schweikhard
- Institute of Physics, University of Greifswald, 17489, Greifswald, Germany
| | - K-H Meiwes-Broer
- Institute of Physics, University of Rostock, 18059, Rostock, Germany. .,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - J Tiggesbäumker
- Institute of Physics, University of Rostock, 18059, Rostock, Germany. .,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| |
Collapse
|
4
|
Jiang J, Zuo S, Wang G, Liu J, Zhang X, Gao Y. Double transformation of the nonlinear absorption in silver nanoparticles. OPTICS EXPRESS 2022; 30:41255-41263. [PMID: 36366607 DOI: 10.1364/oe.472705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The nonlinear absorption of 40 nm Ag nanoparticles (Ag NPs) was investigated using open aperture (OA) Z-scan technique at 532 nm. Experiments show that the nonlinear absorption behavior of Ag NPs is intensity dependent. Specifically, under low laser energy the Ag NPs shows saturable absorption (SA). At medium laser energy, the transformation of nonlinear absorption from SA to reverse saturable absorption (RSA) happens. While under stronger laser energy, double transformation (SA→RSA→SA) of nonlinear absorption occurs. The experimental results were analyzed theoretically using a model based on single-photon absorption and two-photon absorption saturation.
Collapse
|
5
|
Ninakanti R, Dingenen F, Borah R, Peeters H, Verbruggen SW. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications. Top Curr Chem (Cham) 2022; 380:40. [PMID: 35951165 DOI: 10.1007/s41061-022-00390-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
(Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term "hybrid" implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core-shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.
Collapse
Affiliation(s)
- Rajeshreddy Ninakanti
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hannelore Peeters
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
6
|
Liu G, Lou Y, Zhao Y, Burda C. Directional Damping of Plasmons at Metal-Semiconductor Interfaces. Acc Chem Res 2022; 55:1845-1856. [PMID: 35696292 DOI: 10.1021/acs.accounts.2c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusOver the past decade, it has been shown that surface plasmons can enhance photoelectric conversion in photovoltaics, photocatalysis, and other optoelectronic applications through their plasmonic absorption and damping processes. However, plasmonically enhanced devices have yet to routinely match or exceed the efficiencies of traditional semiconductor devices. The effect of plasmonic losses dissipates the absorbed photoenergy mostly into heat and that has hampered the realization of superior next-generation plasmonic optoelectronic devices. Several approaches are being explored to alleviate this situation, including using gain to compensate for the plasmonic losses, designing and synthesizing alternative low-loss plasmonic materials, and reducing activation barriers in plasmonic devices and physical thicknesses of photoabsorber layers to lower the plasmonic losses. A newly proposed plasmon-induced interfacial charge-transfer transition (PIICTT) mechanism has proven to be effective in minimizing energy loss during interfacial charge transfer. The PIICTT leads to a damping of metallic plasmonics by directly generating excitons at the plasmonic metal/semiconductor heteronanostructures. This novel concept has been proven to overcome some of the limitations of electron-transfer inefficiencies, renewing a focus on surface plasmon damping processes with the goal that the plasmonic excitation energies of metal nanoparticles can be more efficiently transferred to the adjacent semiconductor components in the absence and presence of an effective interlayer of carrier-selective blocking layer (CSBL). Several theoretical and experimental studies have concluded that efficient plasmon-induced ultrafast hot-carrier transfer was observed in plasmonic-metal/semiconductor heteronanostructures. The PIICTT mechanism may well be a general phenomenon at plasmonic metal/semiconductor, metal/molecule, semiconductor/semiconductor, and semiconductor/molecule heterointerfaces. Thus, the PIICTT presents a new opportunity to limit energy loss in plasmonic-metal nanostructures and increase device efficiencies based on plasmonic coupling. The nonradiative damping of surface plasmons can impact the energy flux direction and thereby provide a new process beyond light trapping, focusing, and hot carrier creation.In this Account, we draw much attention to the benefits of interfacial plasmonic coupling, highlighting recent pioneering discoveries in which plasmon-induced interfacial charge- and energy-transfer processes enable the generation of hot charge carriers near the plasmonic-metal/semiconductor interfaces. This process is likely to increase the photoelectric conversion efficiency, constituting "plasmonic enhancement". We also discuss recent advances in the dynamics of surface plasmon relaxation and highlight exciting new possibilities for plasmonic metals and their interactions with strongly attached semiconductors to provide directional energy fluxes. While this new research area comes on the heels of much elaborate research on both metal and semiconductor nanomaterials, it provides a subtle but important refinement in understanding the optoelectronic properties of materials with far-reaching consequences from fundamental interface science to technological applications. We hope that this Account will contribute to a more systematic description of interface-coupled plasmonics, both fundamentally and in terms of applications toward the design of plasmonic heterostructured devices.
Collapse
Affiliation(s)
- Guoning Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.,School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Clemens Burda
- Department of Chemistry, Millis Science Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Geng X, Abdellah M, Bericat Vadell R, Folkenant M, Edvinsson T, Sá J. Direct Plasmonic Solar Cell Efficiency Dependence on Spiro-OMeTAD Li-TFSI Content. NANOMATERIALS 2021; 11:nano11123329. [PMID: 34947678 PMCID: PMC8708565 DOI: 10.3390/nano11123329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022]
Abstract
The proliferation of the internet of things (IoT) and other low-power devices demands the development of energy harvesting solutions to alleviate IoT hardware dependence on single-use batteries, making their deployment more sustainable. The propagation of energy harvesting solutions is strongly associated with technical performance, cost and aesthetics, with the latter often being the driver of adoption. The general abundance of light in the vicinity of IoT devices under their main operation window enables the use of indoor and outdoor photovoltaics as energy harvesters. From those, highly transparent solar cells allow an increased possibility to place a sustainable power source close to the sensors without significant visual appearance. Herein, we report the effect of hole transport layer Li-TFSI dopant content on semi-transparent, direct plasmonic solar cells (DPSC) with a transparency of more than 80% in the 450-800 nm region. The findings revealed that the amount of oxidized spiro-OMeTAD (spiro+TFSI-) significantly modulates the transparency, effective conductance and conditions of device performance, with an optimal performance reached at around 33% relative concentration of Li-TFSI concerning spiro-OMeTAD. The Li-TFSI content did not affect the immediate charge extraction, as revealed by an analysis of electron-phonon lifetime. Hot electrons and holes were injected into the respective layers within 150 fs, suggesting simultaneous injection, as supported by the absence of hysteresis in the I-V curves. The spiro-OMeTAD layer reduces the Au nanoparticles' reflection/backscattering, which improves the overall cell transparency. The results show that the system can be made highly transparent by precise tuning of the doping level of the spiro-OMeTAD layer with retained plasmonics, large optical cross-sections and the ultrathin nature of the devices.
Collapse
Affiliation(s)
- Xinjian Geng
- Department of Chemistry—Angstrom, Uppsala University, 751 20 Uppsala, Sweden; (X.G.); (R.B.V.)
| | - Mohamed Abdellah
- R&D Division, Peafowl Solar Power AB, 756 43 Uppsala, Sweden; (M.A.); (M.F.)
- Department of Chemistry, Qena Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Robert Bericat Vadell
- Department of Chemistry—Angstrom, Uppsala University, 751 20 Uppsala, Sweden; (X.G.); (R.B.V.)
| | - Matilda Folkenant
- R&D Division, Peafowl Solar Power AB, 756 43 Uppsala, Sweden; (M.A.); (M.F.)
| | - Tomas Edvinsson
- Department of Materials Science and Engineering—Solid State Physics, Uppsala University, 751 20 Uppsala, Sweden;
| | - Jacinto Sá
- Department of Chemistry—Angstrom, Uppsala University, 751 20 Uppsala, Sweden; (X.G.); (R.B.V.)
- R&D Division, Peafowl Solar Power AB, 756 43 Uppsala, Sweden; (M.A.); (M.F.)
- Institute of Physical Chemistry, Polish Academy of Sciences (IChF-PAN), 01-224 Warsaw, Poland
- Correspondence: ; Tel.: +46-18-471-6806
| |
Collapse
|
8
|
Abstract
Resonant nonlinear optical absorption of silver nanoparticles was studied experimentally via open aperture Z-scan using 130 fs, 400 nm laser pulses. Experimental results show that, at low laser intensity, silver nanoparticles can exhibit saturated absorption. While at high laser intensity, it shows reverse saturated absorption. The saturable absorption is explained in terms of ground state plasmon bleaching, while the reverse saturable absorption is believed to be from two-photon absorption. Saturable optical intensity and two-photon absorption coefficient were obtained to be 1.3×1010 W/m2 and 3.3×10−10 m/W, respectively. The energy relaxation process of Ag nanoparticles after laser excitation was studied via pump-probe technique at 400 nm. Experimental results demonstrated that energy relaxation included electron-phonon coupling process with time constant τ1=(713±50) fs, and phonon-phonon coupling process with time constant τ2=(25.2±3) ps, respectively.
Collapse
|
9
|
A photoanode with hierarchical nanoforest TiO 2 structure and silver plasmonic nanoparticles for flexible dye sensitized solar cell. Sci Rep 2021; 11:7552. [PMID: 33824366 PMCID: PMC8024298 DOI: 10.1038/s41598-021-87123-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/15/2021] [Indexed: 11/26/2022] Open
Abstract
Due to unique photovoltaic properties, the nanostructured morphologies of TiO2 on flexible substrate have been studied extensively in the recent years for applications in dye sensitized solar cells (DSSCs). Microstructured electrode materials with high surface area can facilitate rapid charge transport and thus improve the light-to-current conversion efficiency. Herein we present an improved photoanode with forest like photoactive TiO2 hierarchical microstructure using a simple and facile hydrothermal route. To utilize the surface plasmon resonance (SPR) and hence increase the photon conversion efficiency, a plasmonic nanoparticle Ag has also been deposited using a very feasible photoreduction method. The branched structure of the photoanode increases the dye loading by filling the space between the nanowires, whereas Ag nanoparticles play the multiple roles of dye absorption and light scattering to increase the light-to-current conversion efficiency of the device. The branched structure provides a suitable matrix for the subsequent Ag deposition. They improve the charge collection efficiency by providing the preferential electron pathways. The high-density Ag nanoparticles deposited on the forest like structure also decrease the charge recombination and therefore improve the photovoltaic efficiency of the cells. As a result, the DSSC based on this novel photoanode shows remarkably higher photon conversion efficiency (ηmax = 4.0% and ηopt = 3.15%) compared to the device based on pristine nanowire or forest-like TiO2 structure. The flexibility of the device showed sustainable and efficient performance of the microcells.
Collapse
|
10
|
Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, Yuan X. Plasmonic tweezers: for nanoscale optical trapping and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:59. [PMID: 33731693 PMCID: PMC7969631 DOI: 10.1038/s41377-021-00474-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.
Collapse
Affiliation(s)
- Yuquan Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Xiujie Dou
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Xianyou Wang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hendrik Paul Urbach
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Michael G Somekh
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
11
|
Hattori Y, Meng J, Zheng K, Meier de Andrade A, Kullgren J, Broqvist P, Nordlander P, Sá J. Phonon-Assisted Hot Carrier Generation in Plasmonic Semiconductor Systems. NANO LETTERS 2021; 21:1083-1089. [PMID: 33416331 PMCID: PMC7877730 DOI: 10.1021/acs.nanolett.0c04419] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Indexed: 05/23/2023]
Abstract
Plasmonic materials have optical cross sections that exceed by 10-fold their geometric sizes, making them uniquely suitable to convert light into electrical charges. Harvesting plasmon-generated hot carriers is of interest for the broad fields of photovoltaics and photocatalysis; however, their direct utilization is limited by their ultrafast thermalization in metals. To prolong the lifetime of hot carriers, one can place acceptor materials, such as semiconductors, in direct contact with the plasmonic system. Herein, we report the effect of operating temperature on hot electron generation and transfer to a suitable semiconductor. We found that an increase in the operation temperature improves hot electron harvesting in a plasmonic semiconductor hybrid system, contrasting what is observed on photodriven processes in nonplasmonic systems. The effect appears to be related to an enhancement in hot carrier generation due to phonon coupling. This discovery provides a new strategy for optimization of photodriven energy production and chemical synthesis.
Collapse
Affiliation(s)
- Yocefu Hattori
- Physical
Chemistry Division, Department of Chemistry, Ångström
Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Jie Meng
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Kaibo Zheng
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
- Chemical
Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
| | - Ageo Meier de Andrade
- Structural
Chemistry Division, Department of Chemistry, Ångström
Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Jolla Kullgren
- Structural
Chemistry Division, Department of Chemistry, Ångström
Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Peter Broqvist
- Structural
Chemistry Division, Department of Chemistry, Ångström
Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Peter Nordlander
- Department
of Physics, Rice University, 6100 South Main Street, Houston, Texas 77251-1892, United States
| | - Jacinto Sá
- Physical
Chemistry Division, Department of Chemistry, Ångström
Laboratory, Uppsala University, 75120 Uppsala, Sweden
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
12
|
Shibuta M, Yamamoto K, Ohta T, Inoue T, Mizoguchi K, Nakaya M, Eguchi T, Nakajima A. Confined Hot Electron Relaxation at the Molecular Heterointerface of the Size-Selected Plasmonic Noble Metal Nanocluster and Layered C 60. ACS NANO 2021; 15:1199-1209. [PMID: 33411503 DOI: 10.1021/acsnano.0c08248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The plasmonic response of metallic nanostructures plays a key role in amplifying photocatalytic and photoelectric conversion. Since the plasmonic behavior of noble metal nanoparticles is known to generate energetic charge carriers such as hot electrons, it is expected that the hot electrons can enhance conversion efficiency if they are transferred into a neighboring molecule or semiconductor. However, the method of transferring the energized charge carriers from the plasmonically generated hot electrons to the neighboring species remains controversial. Herein, we fabricated a molecularly well-defined heterointerface between the size-selected plasmonic noble-metal nanoclusters (NCs) of Agn (n = 3-55)/Aun (n = 21) and the organic C60 film to investigate hot electron generation and relaxation dynamics using time-resolved two-photon photoemission (2PPE) spectroscopy. By tuning the NC size and the polarization of the femtosecond excitation photons, the plasmonic behavior is characterized by 2PPE intensity enhancement by 10-100 times magnitude, which emerge at n ≥ 9 for Agn NCs. The 2PPE spectra exhibit contributions from low-energy electrons forming coherent plasmonic currents and hot electrons with an excitation energy up to photon energy owing to two-photon excitation of an occupied state of the Agn NC below the Fermi level. The time-resolved pump-probe measurements demonstrate that plasmon dephasing generates hot electrons which undergo electron-electron scattering. However, no photoemission occurs via the charge transfer state forming Agn+C60- located in the vicinity of the Fermi level. Thus, this study reveals the mechanism of ultrafast confined hot electron relaxation within plasmonic Agn NCs at the molecular heterointerface.
Collapse
Affiliation(s)
- Masahiro Shibuta
- Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität, D-35032 Marburg, Germany
| | | | | | | | | | - Masato Nakaya
- Nakajima Designer Nanocluster Assembly Project, ERATO, Japan Science and Technology Agency (JST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan
| | - Toyoaki Eguchi
- Nakajima Designer Nanocluster Assembly Project, ERATO, Japan Science and Technology Agency (JST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan
| | - Atsushi Nakajima
- Nakajima Designer Nanocluster Assembly Project, ERATO, Japan Science and Technology Agency (JST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan
| |
Collapse
|
13
|
van Turnhout L, Hattori Y, Meng J, Zheng K, Sá J. Direct Observation of a Plasmon-Induced Hot Electron Flow in a Multimetallic Nanostructure. NANO LETTERS 2020; 20:8220-8228. [PMID: 33095592 PMCID: PMC7662917 DOI: 10.1021/acs.nanolett.0c03344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plasmon hot carriers are interesting for photoredox chemical synthesis but their direct utilization is limited by their ultrafast thermalization. Therefore, they are often transferred to suitable accepting materials that expedite their lifetime. Solid-state photocatalysts are technologically more suitable than their molecular counterparts, but their photophysical processes are harder to follow due to the absence of clear optical fingerprints. Herein, the journey of hot electrons in a solid-state multimetallic photocatalyst is revealed by a combination of ultrafast visible and infrared spectroscopy. Dynamics showed that electrons formed upon silver plasmonic excitation reach the gold catalytic site within 700 fs and the electron flow could also be reversed. Gold is the preferred site until saturation of its 5d band occurs. Silver-plasmon hot electrons increased the rate of nitrophenol reduction 16-fold, confirming the preponderant role of hot electrons in the overall catalytic activity and the importance to follow hot carriers' journeys in solid-state photosystems.
Collapse
Affiliation(s)
- Lars van Turnhout
- Physical
Chemistry Division, Department of Chemistry, Ångström
Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Yocefu Hattori
- Physical
Chemistry Division, Department of Chemistry, Ångström
Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Jie Meng
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Kaibo Zheng
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
- Chemical
Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
| | - Jacinto Sá
- Physical
Chemistry Division, Department of Chemistry, Ångström
Laboratory, Uppsala University, 75120 Uppsala, Sweden
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Plasmon expedited response time and enhanced response in gold nanoparticles-decorated zinc oxide nanowire-based nitrogen dioxide gas sensor at room temperature. J Colloid Interface Sci 2020; 582:658-668. [PMID: 32911413 DOI: 10.1016/j.jcis.2020.08.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
A highly sensitive and rapidly responsive nitrogen dioxide (NO2) gas sensor based on gold (Au) nanoparticles (NPs)-decorated zinc oxide (ZnO) nanowires (NWs) is presented. The Au NPs decoration was conducted onto ZnO NWs with and without a (3-aminopropyl)triethoxysilane (APTES) layer on their surface by using the electrostatic force. The samples without the APTES layer exhibited high NO2 gas sensitivity (i.e. expedited response time and enhanced gas response) due to localized surface plasmon resonance (LSPR) of the Au NPs; in particular, the NO2 gas response and the response time were increased by three times and shortened by 86%, respectively, compared with the undecorated ZnO NWs. The presence of the APTES layer improved the Au NPs attachment, but hindering the gas adsorption on the ZnO NWs surface, as proven by the observed photocurrent and gas response. Our findings imply that the response time of semiconductor gas sensors can be remarkably expedited by the LSPR effect, which is useful for developing practical gas sensors.
Collapse
|
15
|
Da Browski M, Dai Y, Petek H. Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time. Chem Rev 2020; 120:6247-6287. [PMID: 32530607 DOI: 10.1021/acs.chemrev.0c00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmonics is a rapidly growing field spanning research and applications across chemistry, physics, optics, energy harvesting, and medicine. Ultrafast photoemission electron microscopy (PEEM) has demonstrated unprecedented power in the characterization of surface plasmons and other electronic excitations, as it uniquely combines the requisite spatial and temporal resolution, making it ideally suited for 3D space and time coherent imaging of the dynamical plasmonic phenomena on the nanofemto scale. The ability to visualize plasmonic fields evolving at the local speed of light on subwavelength scale with optical phase resolution illuminates old phenomena and opens new directions for growth of plasmonics research. In this review, we guide the reader thorough experimental description of PEEM as a characterization tool for both surface plasmon polaritons and localized plasmons and summarize the exciting progress it has opened by the ultrafast imaging of plasmonic phenomena on the nanofemto scale.
Collapse
Affiliation(s)
- Maciej Da Browski
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4QL, U.K
| | - Yanan Dai
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hrvoje Petek
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
16
|
Zhong JH, Vogelsang J, Yi JM, Wang D, Wittenbecher L, Mikaelsson S, Korte A, Chimeh A, Arnold CL, Schaaf P, Runge E, Huillier AL, Mikkelsen A, Lienau C. Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure. Nat Commun 2020; 11:1464. [PMID: 32193407 PMCID: PMC7081225 DOI: 10.1038/s41467-020-15232-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/21/2020] [Indexed: 11/09/2022] Open
Abstract
The integration of metallic plasmonic nanoantennas with quantum emitters can dramatically enhance coherent harmonic generation, often resulting from the coupling of fundamental plasmonic fields to higher-energy, electronic or excitonic transitions of quantum emitters. The ultrafast optical dynamics of such hybrid plasmon-emitter systems have rarely been explored. Here, we study those dynamics by interferometrically probing nonlinear optical emission from individual porous gold nanosponges infiltrated with zinc oxide (ZnO) emitters. Few-femtosecond time-resolved photoelectron emission microscopy reveals multiple long-lived localized plasmonic hot spot modes, at the surface of the randomly disordered nanosponges, that are resonant in a broad spectral range. The locally enhanced plasmonic near-field couples to the ZnO excitons, enhancing sum-frequency generation from individual hot spots and boosting resonant excitonic emission. The quantum pathways of the coupling are uncovered from a two-dimensional spectrum correlating fundamental plasmonic excitations to nonlinearly driven excitonic emissions. Our results offer new opportunities for enhancing and coherently controlling optical nonlinearities by exploiting nonlinear plasmon-quantum emitter coupling.
Collapse
Affiliation(s)
- Jin-Hui Zhong
- Institute of Physics, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Jan Vogelsang
- Department of Physics, Lund University, SE-221 00, Lund, Sweden.,Nano Lund, Lund University, Box 118, 22100, Lund, Sweden
| | - Jue-Min Yi
- Institute of Physics, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Dong Wang
- Institut für Mikro- und Nanotechnologien MacroNano® and Institut für Werkstofftechnik, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Lukas Wittenbecher
- Department of Physics, Lund University, SE-221 00, Lund, Sweden.,Nano Lund, Lund University, Box 118, 22100, Lund, Sweden
| | - Sara Mikaelsson
- Department of Physics, Lund University, SE-221 00, Lund, Sweden
| | - Anke Korte
- Institute of Physics, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Abbas Chimeh
- Institute of Physics, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Cord L Arnold
- Department of Physics, Lund University, SE-221 00, Lund, Sweden
| | - Peter Schaaf
- Institut für Mikro- und Nanotechnologien MacroNano® and Institut für Werkstofftechnik, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Erich Runge
- Institut für Mikro- und Nanotechnologien MacroNano® and Institut für Physik, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | | | - Anders Mikkelsen
- Department of Physics, Lund University, SE-221 00, Lund, Sweden.,Nano Lund, Lund University, Box 118, 22100, Lund, Sweden
| | - Christoph Lienau
- Institute of Physics, Carl von Ossietzky University, 26111, Oldenburg, Germany. .,Forschungszentrum Neurosensorik, Carl von Ossietzky University, 26111, Oldenburg, Germany.
| |
Collapse
|
17
|
Yamagiwa K, Shibuta M, Nakajima A. Visualization of Surface Plasmons Propagating at the Buried Organic/Metal Interface with Silver Nanocluster Sensitizers. ACS NANO 2020; 14:2044-2052. [PMID: 31999096 DOI: 10.1021/acsnano.9b08653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Visualization of surface plasmon polariton (SPP) propagation at dielectric/metal interfaces is indispensable in providing opportunities for the precise designing and controlling of the functionalities of future plasmonic nanodevices. Here, we report the visualization of SPPs propagating along the buried organic/metal interface of fullerene (C60)/Au(111), through dual-colored two-photon photoemission electron microscopy (2P-PEEM) which precisely visualizes the SPP propagation of plasmonic metal nanostructures. Although SPPs excited by near-infrared photons at the few monolayer C60/Au(111) interface are clearly visualized as interference beat patterns between the SPPs and incident light, faithfully reflecting SPP properties modulated by the overlayer, photoemission signals are suppressed for thicker C60 films, due to less valence electrons participating in 2P-photoemission processes. With the use of silver (Agn (n = 21 and 55)) nanoclusters, which exhibit enhancement of overall photoemission intensities due to localized surface plasmons functioning as SPP sensitizers, it is revealed that the 2P-PEEM is applicable to the imaging of SPPs for thick C60/Au(111) interfaces, where SPP properties are hardly modulated by the added small amount (∼0.1 monolayer) of Agn sensitizers.
Collapse
Affiliation(s)
- Kana Yamagiwa
- Department of Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Masahiro Shibuta
- Keio Institute of Pure and Applied Science (KiPAS) , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Atsushi Nakajima
- Department of Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
- Keio Institute of Pure and Applied Science (KiPAS) , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| |
Collapse
|
18
|
Zhou S, Chen K, Guo X, Cole MT, Wu Y, Li Z, Zhang S, Li C, Dai Q. Antenna-coupled vacuum channel nano-diode with high quantum efficiency. NANOSCALE 2020; 12:1495-1499. [PMID: 31913390 DOI: 10.1039/c9nr06109f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vacuum channel diodes have the potential to serve as a platform for converting free-space electromagnetic radiation into electronic signals within ultrafast timescales. However, the conversion efficiency is typically very low because conventional vacuum channel diode structures suffer from high surface barriers, especially when using lower energy photon excitation (near-infrared photons or lower). Here, we report on an optical antenna-coupled vacuum channel nano-diode, which demonstrates a greatly improved quantum efficiency up to ∼4% at 800 nm excitation; an efficiency several orders of magnitude higher than any previously reported value. The nano diodes are formed at the cleaved edge of a metal-insulator-semiconductor (MIS) structure, where a gold thin film with nanohole array serves as both the metal electrode and light-harvesting antenna. At the nanoholes-insulator interface, the tunneling barrier is greatly reduced due to the coulombic repulsion induced high local electron density, such that the resonant plasmon induced hot electron population can readily inject into the vacuum channel. The presented vertical tertiary MIS junction enables a new class of high-efficiency, polarization-specific and wavelength- sensitive optical modulated photodetector that has the potential for developing a new generation of opto-electronic systems.
Collapse
Affiliation(s)
- Shenghan Zhou
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li L, Liu W, Gao A, Zhao Y, Lu Q, Yu L, Wang J, Yu L, Shao L, Miao F, Shi Y, Xu Y, Wang X. Plasmon Excited Ultrahot Carriers and Negative Differential Photoresponse in a Vertical Graphene van der Waals Heterostructure. NANO LETTERS 2019; 19:3295-3304. [PMID: 31025869 DOI: 10.1021/acs.nanolett.9b00908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Photogenerated nonequilibrium hot carriers play a key role in graphene's intriguing optoelectronic properties. Compared to conventional photoexcitation, plasmon excitation can be engineered to enhance and control the generation and dynamics of hot carriers. Here, we report an unusual negative differential photoresponse of plasmon-induced "ultrahot" electrons in a graphene-boron nitride-graphene tunneling junction. We demonstrate nanocrescent gold plasmonic nanostructures that substantially enhance the absorption of long-wavelength photons whose energy is greatly below the tunneling barrier and significantly boost the electron thermalization in graphene. We further analyze the generation and transfer of ultrahot electrons under different bias and power conditions. We find that the competition among thermionic emission, the carrier-cooling effect, and the field effect results in a hitherto unusual negative differential photoresponse in the photocurrent-bias plot. Our results not only exemplify a promising platform for detecting low-energy photons, enhancing the photoresponse, and reducing the dark current but also reveal the critically coupled pathways for harvesting ultrahot carriers.
Collapse
Affiliation(s)
- Lingfei Li
- Department of Information Science & Electronic Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Wei Liu
- Department of Information Science & Electronic Engineering , Zhejiang University , Hangzhou 310058 , China
| | | | | | | | | | | | | | - Lei Shao
- Department of Physics , The Chinese University of Hong Kong , Shatin , Hong Kong SAR China
| | | | | | - Yang Xu
- Department of Information Science & Electronic Engineering , Zhejiang University , Hangzhou 310058 , China
| | | |
Collapse
|
20
|
Caligiuri V, Palei M, Biffi G, Artyukhin S, Krahne R. A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities. NANO LETTERS 2019; 19:3151-3160. [PMID: 30920844 DOI: 10.1021/acs.nanolett.9b00564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Metal/Insulator/Metal nanocavities (MIMs) are highly versatile systems for nanometric light confinement and waveguiding, and their optical properties are mostly interpreted in terms of surface plasmon polaritons. Although classic electromagnetic theory accurately describes their behavior, it often lacks physical insight, leaving some fundamental aspects of light interaction with these structures unexplored. In this work, we elaborate a quantum mechanical description of the MIM cavity as a double barrier quantum well. We identify the square of the imaginary part κ of the refractive index ñ of the metal as the optical potential and find that MIM cavity resonances are suppressed if the ratio n/κ exceeds a certain limit, which shows that low n and high κ values are desired for strong and sharp cavity resonances. Interestingly, the spectral regions of cavity mode suppression correspond to the interband transitions of the metals, where the optical processes are intrinsically non-Hermitian. The quantum treatment allows to describe the tunnel effect for photons and reveals that the MIM cavity resonances can be excited by resonant tunneling via illumination through the metal, without the need of momentum matching techniques such as prisms or grating couplers. By combining this analysis with spectroscopic ellipsometry on experimental MIM structures and by developing a simple harmonic oscillator model of the MIM for the calculation of its effective permittivity, we show that the cavity eigenmodes coincide with low-loss zeros of the effective permittivity. Therefore, the MIM resonances correspond to epsilon-near-zero (ENZ) eigenmodes that can be excited via resonant tunneling. Our approach provides a toolbox for the engineering of ENZ resonances throughout the entire visible range, which we demonstrate experimentally and theoretically. In particular, we apply our quantum mechanical approach to asymmetric MIM superabsorbers and use it for configuring broadly tunable refractive index sensors. Our work elucidates the role of MIM cavities as photonic analogues to tunnel diodes and opens new perspectives for metamaterials with designed ENZ response.
Collapse
Affiliation(s)
| | - Milan Palei
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Chimica e Chimica Industriale , Università degli Studi di Genova , Via Dodecaneso, 31 , 16146 Genova , Italy
| | - Giulia Biffi
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Chimica e Chimica Industriale , Università degli Studi di Genova , Via Dodecaneso, 31 , 16146 Genova , Italy
| | - Sergey Artyukhin
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Roman Krahne
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
21
|
Lee C, Park Y, Park JY. Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO2 nanodiode. RSC Adv 2019; 9:18371-18376. [PMID: 35515219 PMCID: PMC9064733 DOI: 10.1039/c9ra02601k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
Better hot electron extraction via intraband and interband excitation was discerned on Cu compared with Au using plasmonic nanodiode.
Collapse
Affiliation(s)
- Changhwan Lee
- Graduate School of EEWS
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| | - Yujin Park
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| | - Jeong Young Park
- Graduate School of EEWS
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
- Department of Chemistry
| |
Collapse
|
22
|
Abstract
We firstly, in this review, introduce the optical properties of plasmonic metals, and then focus on introducing the unique optical properties of the noble metal–metal-oxide hybrid system by revealing the physical mechanism of plasmon–exciton interaction, which was confirmed by theoretical calculations and experimental investigations. With this noble metal–metal-oxide hybrid system, plasmonic nanostructure–semiconductor exciton coupling interactions for interface catalysis has been analyzed in detail. This review can provide a deeper understanding of the physical mechanism of exciton–plasmon interactions in surface catalysis reactions.
Collapse
|
23
|
Sprague-Klein EA, Negru B, Madison LR, Coste SC, Rugg BK, Felts AM, McAnally MO, Banik M, Apkarian VA, Wasielewski MR, Ratner MA, Seideman T, Schatz GC, Van Duyne RP. Photoinduced Plasmon-Driven Chemistry in trans-1,2-Bis(4-pyridyl)ethylene Gold Nanosphere Oligomers. J Am Chem Soc 2018; 140:10583-10592. [DOI: 10.1021/jacs.8b06347] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | - Alanna M. Felts
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Mayukh Banik
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vartkess A. Apkarian
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | | | | | | | | | | |
Collapse
|
24
|
Three-dimensional hot electron photovoltaic device with vertically aligned TiO 2 nanotubes. Sci Rep 2018; 8:7330. [PMID: 29743488 PMCID: PMC5943325 DOI: 10.1038/s41598-018-25335-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/19/2018] [Indexed: 01/21/2023] Open
Abstract
Titanium dioxide (TiO2) nanotubes with vertically aligned array structures show substantial advantages in solar cells as an electron transport material that offers a large surface area where charges travel linearly along the nanotubes. Integrating this one-dimensional semiconductor material with plasmonic metals to create a three-dimensional plasmonic nanodiode can influence solar energy conversion by utilizing the generated hot electrons. Here, we devised plasmonic Au/TiO2 and Ag/TiO2 nanodiode architectures composed of TiO2 nanotube arrays for enhanced photon absorption, and for the subsequent generation and capture of hot carriers. The photocurrents and incident photon to current conversion efficiencies (IPCE) were obtained as a function of photon energy for hot electron detection. We observed enhanced photocurrents and IPCE using the Ag/TiO2 nanodiode. The strong plasmonic peaks of the Au and Ag from the IPCE clearly indicate an enhancement of the hot electron flux resulting from the presence of surface plasmons. The calculated electric fields and the corresponding absorbances of the nanodiode using finite-difference time-domain simulation methods are also in good agreement with the experimental results. These results show a unique strategy of combining a hot electron photovoltaic device with a three-dimensional architecture, which has the clear advantages of maximizing light absorption and a metal–semiconductor interface area.
Collapse
|
25
|
Merino P, Rosławska A, Große C, Leon CC, Kuhnke K, Kern K. Bimodal exciton-plasmon light sources controlled by local charge carrier injection. SCIENCE ADVANCES 2018; 4:eaap8349. [PMID: 29806018 PMCID: PMC5969822 DOI: 10.1126/sciadv.aap8349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/12/2018] [Indexed: 05/24/2023]
Abstract
Electrical charges can generate photon emission in nanoscale quantum systems by two independent mechanisms. First, radiative recombination of pairs of oppositely charged carriers generates sharp excitonic lines. Second, coupling between currents and collective charge oscillations results in broad plasmonic bands. Both luminescence modes can be simultaneously generated upon charge carrier injection into thin C60 crystallites placed in the plasmonic nanocavity of a scanning tunneling microscope (STM). Using the sharp tip of the STM as a subnanometer-precise local electrode, we show that the two types of electroluminescence are induced by two separate charge transport channels. Holes injected into the valence band promote exciton generation, whereas electrons extracted from the conduction band cause plasmonic luminescence. The different dynamics of the two mechanisms permit controlling their relative contribution in the combined bimodal emission. Exciton recombination prevails for low charge injection rates, whereas plasmon decay outshines for high tunneling currents. The continuous transition between both regimes is described by a rate model characterizing emission dynamics on the nanoscale. Our work provides the basis for developing blended exciton-plasmon light sources with advanced functionalities.
Collapse
Affiliation(s)
- Pablo Merino
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Anna Rosławska
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Christoph Große
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Christopher C. Leon
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kuhnke
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Cai YY, Liu JG, Tauzin LJ, Huang D, Sung E, Zhang H, Joplin A, Chang WS, Nordlander P, Link S. Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers. ACS NANO 2018; 12:976-985. [PMID: 29283248 DOI: 10.1021/acsnano.7b07402] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We demonstrate, experimentally and theoretically, that the photon emission from gold nanorods can be viewed as a Purcell effect enhanced radiative recombination of hot carriers. By correlating the single-particle photoluminescence spectra and quantum yields of gold nanorods measured for five different excitation wavelengths and varied excitation powers, we illustrate the effects of hot carrier distributions evolving through interband and intraband transitions and the photonic density of states on the nanorod photoluminescence. Our model, using only one fixed input parameter, describes quantitatively both emission from interband recombination and the main photoluminescence peak coinciding with the longitudinal surface plasmon resonance.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, ⊥Department of Materials Science and NanoEngineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Jun G Liu
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, ⊥Department of Materials Science and NanoEngineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Lawrence J Tauzin
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, ⊥Department of Materials Science and NanoEngineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Da Huang
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, ⊥Department of Materials Science and NanoEngineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Eric Sung
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, ⊥Department of Materials Science and NanoEngineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Hui Zhang
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, ⊥Department of Materials Science and NanoEngineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Anneli Joplin
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, ⊥Department of Materials Science and NanoEngineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Wei-Shun Chang
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, ⊥Department of Materials Science and NanoEngineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, ⊥Department of Materials Science and NanoEngineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, ‡Department of Physics and Astronomy, §Department of Electrical and Computer Engineering, ⊥Department of Materials Science and NanoEngineering, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
27
|
Lee C, Choi H, Nedrygailov II, Lee YK, Jeong S, Park JY. Enhancement of Hot Electron Flow in Plasmonic Nanodiodes by Incorporating PbS Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5081-5089. [PMID: 29308649 DOI: 10.1021/acsami.7b16793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The enhancement of hot electron generation using plasmonic nanostructures is a promising strategy for developing photovoltaic devices. Here, we show that hot electron flow generated in plasmonic Au/TiO2 nanodiodes by incident light can be amplified when PbS quantum dots are deposited onto the surface of the nanodiodes. The effect is attributed to efficient extraction of hot electrons via a three-dimensional Schottky barrier, thus giving new pathways for hot electron transfer. We also demonstrate a correlation between the photocurrent and Schottky barrier height when using PbS quantum dots with varying size and ligand treatments that allow us to control the electric properties (e.g., band gap and Fermi level, respectively) of the PbS quantum dots. This simple method introduces a new technique for further improving the power conversion efficiency of thin-film photovoltaic devices.
Collapse
Affiliation(s)
- Changhwan Lee
- Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea
| | - Hyekyoung Choi
- Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials , Daejeon 305-343, Republic of Korea
- Department of Nanomechatronics, Korea University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| | - Ievgen I Nedrygailov
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea
| | - Young Keun Lee
- Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea
| | - Sohee Jeong
- Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials , Daejeon 305-343, Republic of Korea
- Department of Nanomechatronics, Korea University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| | - Jeong Young Park
- Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea
| |
Collapse
|
28
|
Surface plasmon induced direct detection of long wavelength photons. Nat Commun 2017; 8:1660. [PMID: 29162817 PMCID: PMC5698436 DOI: 10.1038/s41467-017-01828-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/18/2017] [Indexed: 11/08/2022] Open
Abstract
Millimeter and terahertz wave photodetectors have long been of great interest due to a wide range of applications, but they still face challenges in detection performance. Here, we propose a new strategy for the direct detection of millimeter and terahertz wave photons based on localized surface-plasmon-polariton (SPP)-induced non-equilibrium electrons in antenna-assisted subwavelength ohmic metal-semiconductor-metal (OMSM) structures. The subwavelength OMSM structure is used to convert the absorbed photons into localized SPPs, which then induce non-equilibrium electrons in the structure, while the antenna increases the number of photons coupled into the OMSM structure. When the structure is biased and illuminated, the unidirectional flow of the SPP-induced non-equilibrium electrons forms a photocurrent. The energy of the detected photons is determined by the structure rather than the band gap of the semiconductor. The detection scheme is confirmed by simulation and experimental results from the devices, made of gold and InSb, and a room temperature noise equivalent power (NEP) of 1.5 × 10-13 W Hz-1/2 is achieved.
Collapse
|
29
|
Lehr M, Foerster B, Schmitt M, Krüger K, Sönnichsen C, Schönhense G, Elmers HJ. Momentum Distribution of Electrons Emitted from Resonantly Excited Individual Gold Nanorods. NANO LETTERS 2017; 17:6606-6612. [PMID: 29052414 DOI: 10.1021/acs.nanolett.7b02434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electron emission by femtosecond laser pulses from individual Au nanorods is studied with a time-of-flight momentum resolving photoemission electron microscope (ToF k-PEEM). The Au nanorods adhere to a transparent indium-tin oxide substrate, allowing for illumination from the rear side at normal incidence. Localized plasmon polaritons are resonantly excited at 800 nm with 100 fs long pulses. The momentum distribution of emitted electrons reveals two distinct emission mechanisms: a coherent multiphoton photoemission process from the optically heated electron gas leads to an isotropic emission distribution. In contrast, an additional emission process resulting from the optical field enhancement at both ends of the nanorod leads to a strongly directional emission parallel to the nanorod's long axis. The relative intensity of both contributions can be controlled by the peak intensity of the incident light.
Collapse
Affiliation(s)
- Martin Lehr
- Institut für Physik, Johannes Gutenberg-Universität , Staudinger Weg 7, D-55128 Mainz, Germany
| | - Benjamin Foerster
- Institut für physikalische Chemie, Johannes Gutenberg-Universität , Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School for Excellence Materials Science in Mainz, Johannes Gutenberg University Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| | - Mathias Schmitt
- Institut für physikalische Chemie, Johannes Gutenberg-Universität , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Katja Krüger
- Institut für physikalische Chemie, Johannes Gutenberg-Universität , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Carsten Sönnichsen
- Institut für physikalische Chemie, Johannes Gutenberg-Universität , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Gerd Schönhense
- Institut für Physik, Johannes Gutenberg-Universität , Staudinger Weg 7, D-55128 Mainz, Germany
| | - Hans-Joachim Elmers
- Institut für Physik, Johannes Gutenberg-Universität , Staudinger Weg 7, D-55128 Mainz, Germany
| |
Collapse
|
30
|
Kim SM, Lee C, Goddeti KC, Park JY. Hot plasmonic electron-driven catalytic reactions on patterned metal-insulator-metal nanostructures. NANOSCALE 2017; 9:11667-11677. [PMID: 28776052 DOI: 10.1039/c7nr02805a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The smart design of plasmonic nanostructures offers a unique capability for the efficient conversion of solar energy into chemical energy by strong interactions with resonant photons through the excitation of surface plasmon resonance, which increases the prospect of using sunlight in environmental and energy applications. Here, we show that the catalytic activity of CO oxidation can be tuned by using new model systems: two-dimensional (2D) arrays of metal-insulator-metal (MIM) plasmonic nanoislands designed to efficiently shuttle hot plasmonic electrons. Hot plasmonic electrons are generated upon the absorption of photons on noble metals, followed by the injection of these hot electrons into the Pt nanoparticles through tunneling or Schottky emission mechanisms, depending on the energy of the hot electrons. We found that these MIM nanostructures exhibit higher catalytic activity (i.e. by 40-110%) under light irradiation, revealing a significant impact on the catalytic activity for CO oxidation. The thickness dependence of the enhancement of catalytic activity on the oxide layers is consistent with the tunneling mechanism of hot electron flows. The results imply that surface plasmon-induced hot electron flows by light absorption significantly influence the catalytic activity of CO oxidation.
Collapse
Affiliation(s)
- Sun Mi Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, Republic of Korea.
| | | | | | | |
Collapse
|
31
|
Tan S, Liu L, Dai Y, Ren J, Zhao J, Petek H. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions. J Am Chem Soc 2017; 139:6160-6168. [DOI: 10.1021/jacs.7b01079] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shijing Tan
- Department
of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Liming Liu
- ICQD/Hefei
National Laboratory for Physical Sciences at Microscale, and Key Laboratory
of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences,
and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanan Dai
- Department
of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jindong Ren
- Department
of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jin Zhao
- Department
of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- ICQD/Hefei
National Laboratory for Physical Sciences at Microscale, and Key Laboratory
of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences,
and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hrvoje Petek
- Department
of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
32
|
Yin T, Jiang L, Dong Z, Yang JKW, Shen ZX. Energy transfer and depolarization in the photoluminescence of a plasmonic molecule. NANOSCALE 2017; 9:2082-2087. [PMID: 28116398 DOI: 10.1039/c6nr07946f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a comprehensive experimental study of the polarization dependence between excitation and photoluminescence (PL) emission from single dolmen-like metallic nanostructures that exhibit both Fano-like and Lorentz-like plasmon resonances. Though the PL spectra of this plasmonic "molecule" also exhibit the Fano and Lorentz signature, the emitted photons do not maintain the same polarization as the excitation. Surprisingly, the degree of depolarization correlates closely to the resonant excitation of the constituent atoms (single nanorod). More specifically, the excitation of a transverse plasmon mode results in a depolarized emission through the longitudinal plasmon modes of the constituent nanorods. In view of the recent evidence of on-resonant plasmon induced excitations in generating hot electrons, our results suggest that depolarized PL emissions could be enhanced through hot-electron decay. Both macroscopic and microscopic mechanisms are proposed to well-understand the excitation wavelength dependent depolarized photoluminescence behaviors in the plasmonic molecule. Our results lay a foundation for applying the depolarized photoluminescence of complex plasmonic nanostructures in polarization engineering.
Collapse
Affiliation(s)
- Tingting Yin
- Centre for Disruptive Photonic Technologies (CDPT), School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Liyong Jiang
- Centre for Disruptive Photonic Technologies (CDPT), School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore. and Nanophotonic Laboratory, Department of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Joel K W Yang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore and Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Ze Xiang Shen
- Centre for Disruptive Photonic Technologies (CDPT), School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| |
Collapse
|
33
|
Lei W, Zhang T, Liu P, Rodriguez JA, Liu G, Liu M. Bandgap- and Local Field-Dependent Photoactivity of Ag/Black Phosphorus Nanohybrids. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02520] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wanying Lei
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People’s Republic of China
- Academy
for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Tingting Zhang
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People’s Republic of China
| | - Ping Liu
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gang Liu
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People’s Republic of China
| | - Minghua Liu
- CAS
Key Laboratory of Standardization and Measurement for Nanotechnology,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People’s Republic of China
| |
Collapse
|
34
|
Fedorov N, Geoffroy G, Duchateau G, Štolcová L, Proška J, Novotný F, Domonkos M, Jouin H, Martin P, Raynaud M. Enhanced photoemission from laser-excited plasmonic nano-objects in periodic arrays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:315301. [PMID: 27299999 DOI: 10.1088/0953-8984/28/31/315301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The process of photoelectron emission from gold surfaces covered with nano-objects that are organized in the form of a periodic array is addressed in the short laser pulse regime ([Formula: see text] fs) at moderate intensities [Formula: see text] W cm(-2) and for various laser wavelengths. The emission spectrum from a gold single crystal measured under the same conditions is used for reference. The comparison of the photo-emission yield and the energy of the ejected electrons with their counterparts from the (more simple) reference system shows that the periodic conditions imposed on the target surface drastically enhance both quantities. In addition to the standard mechanism of Coulomb explosion, a second mechanism comes into play, driven by surface plasmon excitation. This can be clearly demonstrated by varying the laser wavelength. This interpretation of the experimental data is supported by predictions from model calculations that account both for the primary quantum electron emission and for the subsequent surface-plasmon-driven acceleration in the vacuum. Despite the fact that the incident laser intensity is as low as [Formula: see text] W cm(-2), such a structured target permits generating electrons with energies as high as 300 eV. Experiments with two incident laser beams of different wavelengths with an adjustable delay, have also been carried out. The results show that there exist various channels for the decay of the photo-emission signal, depending on the target type. These observations are shedding light on the various relaxation mechanisms that take place on different timescales.
Collapse
Affiliation(s)
- N Fedorov
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, 351 Cours de la Libération, 33405 Talence, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gruenke NL, Cardinal MF, McAnally MO, Frontiera RR, Schatz GC, Van Duyne RP. Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chem Soc Rev 2016; 45:2263-90. [PMID: 26848784 DOI: 10.1039/c5cs00763a] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.
Collapse
Affiliation(s)
- Natalie L Gruenke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Ma XC, Dai Y, Yu L, Huang BB. Energy transfer in plasmonic photocatalytic composites. LIGHT, SCIENCE & APPLICATIONS 2016; 5:e16017. [PMID: 30167139 PMCID: PMC6062428 DOI: 10.1038/lsa.2016.17] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 05/03/2023]
Abstract
Among the many novel photocatalytic systems developed in very recent years, plasmonic photocatalytic composites possess great potential for use in applications and are one of the most intensively investigated photocatalytic systems owing to their high solar energy utilization efficiency. In these composites, the plasmonic nanoparticles (PNPs) efficiently absorb solar light through localized surface plasmon resonance and convert it into energetic electrons and holes in the nearby semiconductor. This energy transfer from PNPs to semiconductors plays a decisive role in the overall photocatalytic performance. Thus, the underlying physical mechanism is of great scientific and technological importance and is one of the hottest topics in the area of plasmonic photocatalysts. In this review, we examine the very recent advances in understanding the energy transfer process in plasmonic photocatalytic composites, describing both the theoretical basis of this process and experimental demonstrations. The factors that affect the energy transfer efficiencies and how to improve the efficiencies to yield better photocatalytic performance are also discussed. Furthermore, comparisons are made between the various energy transfer processes, emphasizing their limitations/benefits for efficient operation of plasmonic photocatalysts.
Collapse
|
37
|
Kang Y, Gong Y, Hu Z, Li Z, Qiu Z, Zhu X, Ajayan PM, Fang Z. Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. NANOSCALE 2015; 7:4482-8. [PMID: 25682885 DOI: 10.1039/c4nr07303g] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
With plasmonic hot electron doping, the molybdenum disulfide (MoS2) monolayer with deposited Au@Ag nanorattles effectively enhanced the hydrogen evolution reaction (HER) efficiency. The maximum photocatalysis is achieved under plasmon resonance excitation, and is actively controlled by the incident laser wavelength and power intensity. The localized phase transition of MoS2 is achieved and characterized to explicate this plasmon-enhanced hydrogen evolution. The proposed MoS2-nanoparticle composite combines surface plasmons and planar 2D materials, and pioneers a frontier field of plasmonic MoS2 photocatalysis.
Collapse
Affiliation(s)
- Yimin Kang
- State Key Lab for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nanoplasmonics: Fundamentals and Applications. NATO SCIENCE FOR PEACE AND SECURITY SERIES B: PHYSICS AND BIOPHYSICS 2015. [DOI: 10.1007/978-94-017-9133-5_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Klemm P, Haug T, Bange S, Lupton JM. Time-domain interferometry of surface plasmons at nonlinear continuum hot spots in films of silver nanoparticles. PHYSICAL REVIEW LETTERS 2014; 113:266805. [PMID: 25615373 DOI: 10.1103/physrevlett.113.266805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 06/04/2023]
Abstract
Nonlinear continuum generation from diffraction-limited hot spots in rough silver films exhibits striking narrow-band intensity resonances in excitation wavelength. Time-domain Fourier spectroscopy uncovers how these resonances arise due to the formation of a "plasmon staircase", a discreteness in the fundamental oscillation of the plasmon excitations responsible for generating the white-light continuum. Whereas multiple scattering from discrete antennas can be invoked to explain hot spot formation in random assemblies of isolated particles, hot spots in films of fused nanoparticles are excited by interfering propagating surface plasmons, launched by scattering from individual nanoparticle antennas. For closed films, discrete propagating plasmons interact coherently over distances of tens of microns to pump the hot spot.
Collapse
Affiliation(s)
- Philippe Klemm
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Tobias Haug
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Sebastian Bange
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
40
|
|
41
|
Lee DH, Choi J, Kim S, Park IY, Han S, Kim H, Kim SW. Observation of strongly enhanced ultrashort pulses in 3-D metallic funnel-waveguide. OPTICS EXPRESS 2014; 22:17360-17369. [PMID: 25090549 DOI: 10.1364/oe.22.017360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
For strong field enhancement of ultrashort light pulses, a 3-D metallic funnel-waveguide is analyzed using the finite-difference time-domain (FDTD) method. Then the maximum intensity enhancement actually developed by the funnel-waveguide upon the injection of femtosecond laser pulses is observed using two-photon luminescence (TPL) microscopy. In addition, the ultrafast dephasing profile of the localized field at the hot spot of the funnel-waveguide is verified through the interferometric autocorrelation of the TPL signal. Finally it is concluded the funnel-waveguide is an effective 3-D nanostructure that is capable of boosting the peak pulse intensity of stronger than 80 TWcm(-2) by an enhancement factor of 20 dB without significant degradation of the ultrafast spatiotemporal characteristics of the original pulses.
Collapse
|
42
|
Long R, Prezhdo OV. Instantaneous Generation of Charge-Separated State on TiO2 Surface Sensitized with Plasmonic Nanoparticles. J Am Chem Soc 2014; 136:4343-54. [DOI: 10.1021/ja5001592] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Run Long
- School of Physics and Complex & Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Oleg V Prezhdo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
43
|
Wu K, Rodríguez-Córdoba WE, Yang Y, Lian T. Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures. NANO LETTERS 2013; 13:5255-63. [PMID: 24093501 DOI: 10.1021/nl402730m] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The plasmon-exciton interaction mechanisms in CdS-Au colloidal quantum-confined plexcitonic nanorod heterostructures have been studied by transient absorption spectroscopy. Optical excitation of plasmons in the Au tip leads to hot electron injection into the CdS rod with a quantum yield of ~2.75%. This finding suggests the possibility of further optimization of plasmon-induced hot electron injection efficiency through controlling the size and shape of the plasmonic and excitonic domains for potential light harvesting applications.
Collapse
Affiliation(s)
- Kaifeng Wu
- Department of Chemistry, Emory University , 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| | | | | | | |
Collapse
|
44
|
Taşgın ME. Metal nanoparticle plasmons operating within a quantum lifetime. NANOSCALE 2013; 5:8616-8624. [PMID: 23897124 DOI: 10.1039/c3nr02270f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We investigate the dynamics of a plasmonic oscillation over a metal nanoparticle when it is strongly coupled to a quantum emitter (e.g. quantum dot, molecule). We simulate the density matrix evolution for a simple model, a coupled classical-quantum oscillators system. We show that the lifetime of the plasmonic oscillations can be increased several orders of magnitude, up to the decay time of the quantum emitter. This effect shows itself as the narrowing of the plasmon emission band in the spaser (surface plasmon amplification by the stimulated emission of radiation) experiment [Nature, 2009, 460, 1110], where a gold nanoparticle interacts with the surrounding molecules. Enhancement of the plasmonic excitation lifetime enables stimulated emission to overcome the spontaneous one. The enhancement occurs due to the emergence of a phenomenon analogous to electromagnetically induced transparency (EIT). The effect can find applications in many areas of nanoscale physics, such as in quantum information with plasmons and in increasing solar cell efficiency.
Collapse
Affiliation(s)
- Mehmet Emre Taşgın
- Department of Electrical and Electronics Engineering, Kırklareli University, 39020 Karahıdır, Kırklareli, Turkey.
| |
Collapse
|
45
|
Yu P, Kirschner J. Nanoscale photoelectron mapping and spectroscopy with an atomic force microscope. PHYSICAL REVIEW LETTERS 2013; 111:067602. [PMID: 23971613 DOI: 10.1103/physrevlett.111.067602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/16/2013] [Indexed: 06/02/2023]
Abstract
The tip of an atomic force microscope is used as a local probe for photoelectrons excited by laser illumination. The tip-sample distance is precisely controlled by the van der Waals force and the pure photoemission current is measured without tunneling current contribution. The nanoscale photoelectron mapping with high current contrast is obtained on a cesium covered Au(111) surface. By sweeping the laser photon energy, the local photoelectron spectra are measured on Cs islands and terraces. The results reveal distinct electronic states and photoemission thresholds for different Cs coverage, providing the photoemission current contrast mechanism. The contrast in photoelectron mapping can be further tuned by the incident laser polarization exploiting the symmetry selection rules in the optical excitation.
Collapse
Affiliation(s)
- Ping Yu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | | |
Collapse
|
46
|
Bosman M, Ye E, Tan SF, Nijhuis CA, Yang JKW, Marty R, Mlayah A, Arbouet A, Girard C, Han MY. Surface plasmon damping quantified with an electron nanoprobe. Sci Rep 2013; 3:1312. [PMID: 23425921 PMCID: PMC3578264 DOI: 10.1038/srep01312] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/28/2013] [Indexed: 12/22/2022] Open
Abstract
Fabrication and synthesis of plasmonic structures is rapidly moving towards sub-nanometer accuracy in control over shape and inter-particle distance. This holds the promise for developing device components based on novel, non-classical electro-optical effects. Monochromated electron energy-loss spectroscopy (EELS) has in recent years demonstrated its value as a qualitative experimental technique in nano-optics and plasmonic due to its unprecedented spatial resolution. Here, we demonstrate that EELS can also be used quantitatively, to probe surface plasmon kinetics and damping in single nanostructures. Using this approach, we present from a large (>50) series of individual gold nanoparticles the plasmon Quality factors and the plasmon Dephasing times, as a function of energy/frequency. It is shown that the measured general trend applies to regular particle shapes (rods, spheres) as well as irregular shapes (dendritic, branched morphologies). The combination of direct sub-nanometer imaging with EELS-based plasmon damping analysis launches quantitative nanoplasmonics research into the sub-nanometer realm.
Collapse
Affiliation(s)
- Michel Bosman
- Institute of Materials Research and Engineering, A*STAR-Agency for Science, Technology and Research, 3 Research Link, Singapore 117602.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Interaction of light and surface plasmon polaritons in Ag Islands studied by nonlinear photoemission microscopy. Ultramicroscopy 2013; 130:49-53. [DOI: 10.1016/j.ultramic.2013.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 11/23/2022]
|
48
|
Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. NANO LETTERS 2013; 13:240-247. [PMID: 23194158 DOI: 10.1021/nl303940z] [Citation(s) in RCA: 785] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Heterogeneous catalysis is of paramount importance in chemistry and energy applications. Catalysts that couple light energy into chemical reactions in a directed, orbital-specific manner would greatly reduce the energy input requirements of chemical transformations, revolutionizing catalysis-driven chemistry. Here we report the room temperature dissociation of H(2) on gold nanoparticles using visible light. Surface plasmons excited in the Au nanoparticle decay into hot electrons with energies between the vacuum level and the work function of the metal. In this transient state, hot electrons can transfer into a Feshbach resonance of an H(2) molecule adsorbed on the Au nanoparticle surface, triggering dissociation. We probe this process by detecting the formation of HD molecules from the dissociations of H(2) and D(2) and investigate the effect of Au nanoparticle size and wavelength of incident light on the rate of HD formation. This work opens a new pathway for controlling chemical reactions on metallic catalysts.
Collapse
Affiliation(s)
- Shaunak Mukherjee
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nakashima S, Sugioka K, Tanaka K, Shimizu M, Shimotsuma Y, Miura K, Midorikawa K, Mukai K. Plasmonically enhanced Faraday effect in metal and ferrite nanoparticles composite precipitated inside glass. OPTICS EXPRESS 2012; 20:28191-28199. [PMID: 23263053 DOI: 10.1364/oe.20.028191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Using femtosecond laser irradiation and subsequent annealing, nanocomposite structures composed of spinel-type ferrimagnetic nanoparticles (NPs) and plasmonic metallic NPs have been formed space-selectively within glass doped with both α-Fe(2)O(3) and Al. The Faraday rotation spectra exhibit a distinct negative peak at around 400 nm, suggesting that the ferrimagnetic Faraday response is enhanced by the localized surface plasmon resonance (LSPR) due to metallic Al NPs. At the interfaces in the nanocomposites, the ferrimagnetism of magnetite NPs is directly coupled with the plasmon in the Al NPs. The control of the resonance wavelength of the magneto-optical peaks, namely, the size of plasmonic NPs has been demonstrated by changing the irradiation or annealing conditions.
Collapse
Affiliation(s)
- Seisuke Nakashima
- Department of Solid State Materials and Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Yokohama, Kanagawa 240-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fang Y, Chang WS, Willingham B, Swanglap P, Dominguez-Medina S, Link S. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. ACS NANO 2012; 6:7177-84. [PMID: 22830934 DOI: 10.1021/nn3022469] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
We report on the one-photon photoluminescence of gold nanorods with different aspect ratios. We measured photoluminescence and scattering spectra from 82 gold nanorods using single-particle spectroscopy. We found that the emission and scattering spectra closely resemble each other independent of the nanorod aspect ratio. We assign the photoluminescence to the radiative decay of the longitudinal surface plasmon generated after fast interconversion from excited electron-hole pairs that were initially created by 532 nm excitation. The emission intensity was converted to the quantum yield and was found to approximately exponentially decrease as the energy difference between the excitation and emission wavelength increased for gold nanorods with plasmon resonances between 600 and 800 nm. We compare this plasmon emission to its molecular analogue, fluorescence.
Collapse
Affiliation(s)
- Ying Fang
- Department of Chemistry, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|