1
|
Sin JS. Effect of Bjerrum pairs on the electrostatic properties of an electrolyte solution near charged surfaces: a mean-field approach. Phys Chem Chem Phys 2021; 23:12296-12308. [PMID: 34018512 DOI: 10.1039/d1cp01114f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we investigate the consequences of ion association, coupled with the considerations of finite size effects and orientational ordering of Bjerrum pairs as well as ions and water molecules, on the electric double layer near charged surfaces. Based on the lattice statistical mechanics accounting for finite sizes and dipole moments of ions, Bjerrum pairs and solvent molecules, we consider the formation of Bjerrum pairs and derive the mathematical expressions for Bjerrum pair number density as well as cation/anion number density and water molecule number density. We reveal several significant phenomena. Firstly, it is shown that our approach naturally yields the equilibrium constant for dissociation-association equilibrium between Bjerrum pairs and ions. Secondly, at low surface charge densities, an increase in the bulk concentration of Bjerrum pairs enhances the permittivity and decreases the differential capacitance. Next, for the cases where Bjerrum pairs in an alcohol electrolyte solution have a high value of dipole moment, the Bjerrum pair number density increases with decreasing distance from the charged surface, and the differential capacitance and permittivity are high compared to those for the cases with lower values of Bjerrum-pair dipole moments. Finally, we show that the difference in the concentration and dipole moment of Bjerrum pairs can lead to some variation in osmotic pressure between two similarly charged surfaces.
Collapse
Affiliation(s)
- Jun-Sik Sin
- Natural Science Center, Kim Il Sung University, Taesong District, Pyongyang, Democratic People's Republic of Korea.
| |
Collapse
|
2
|
Okamoto R, Koga K, Onuki A. Theory of electrolytes including steric, attractive, and hydration interactions. J Chem Phys 2020; 153:074503. [PMID: 32828079 DOI: 10.1063/5.0015446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We present a continuum theory of electrolytes composed of a waterlike solvent and univalent ions. First, we start with a density functional F for the coarse-grained solvent, cation, and anion densities, including the Debye-Hückel free energy, the Coulombic interaction, and the direct interactions among these three components. These densities fluctuate obeying the distribution ∝exp(-F/kBT). Eliminating the solvent density deviation in F, we obtain the effective non-Coulombic interactions among the ions, which consist of the direct ones and the solvent-mediated ones. We then derive general expressions for the ion correlation, the apparent partial volume, and the activity and osmotic coefficients up to linear order in the average salt density ns. Second, we perform numerical analysis using the Mansoori-Carnahan-Starling-Leland model [J. Chem. Phys. 54, 1523 (1971)] for three-component hardspheres. The effective interactions sensitively depend on the cation and anion sizes due to competition between the steric and hydration effects, which are repulsive between small-large ion pairs and attractive between symmetric pairs. These agree with previous experiments and Collins' rule [Biophys. J. 72, 65 (1997)]. We also give simple approximate expressions for the ionic interaction coefficients valid for any ion sizes.
Collapse
Affiliation(s)
- Ryuichi Okamoto
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Kenichiro Koga
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Akira Onuki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Rosenberg M, Dekker F, Donaldson JG, Philipse AP, Kantorovich SS. Self-assembly of charged colloidal cubes. SOFT MATTER 2020; 16:4451-4461. [PMID: 32323672 DOI: 10.1039/c9sm02189b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this work, we show how and why the interactions between charged cubic colloids range from radially isotropic to strongly directionally anisotropic, depending on tuneable factors. Using molecular dynamics simulations, we illustrate the effects of typical solvents to complement experimental investigations of cube assembly. We find that in low-salinity water solutions, where cube self-assembly is observed, the colloidal shape anisotropy leads to the strongest attraction along the corner-to-corner line, followed by edge-to-edge, with a face-to-face configuration of the cubes only becoming energetically favorable after the colloids have collapsed into the van der Waals attraction minimum. Analysing the potential of mean force between colloids with varied cubicity, we identify the origin of the asymmetric microstructures seen in experiment.
Collapse
Affiliation(s)
- Margaret Rosenberg
- Faculty of Physics, University of Vienna, Bolzmanngasse 5, Vienna 1090, Austria.
| | | | | | | | | |
Collapse
|
4
|
Liu K, Wu J. Wettability of ultra-small pores of carbon electrodes by size-asymmetric ionic fluids. J Chem Phys 2020; 152:054708. [PMID: 32035459 DOI: 10.1063/1.5131450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, we studied the phase behavior of ionic fluids under confinement using the classical density functional theory within the framework of the restricted primitive model. The theoretical results indicate that narrowing the pore size may lead to a drastic reduction in the electric double layer capacitance, while increasing the surface electrical potential would improve the ionic accessibility of micropores. In this work, we extend the theoretical investigation to systems containing size-asymmetric electrolytes that may exhibit a vapor-liquid like phase transition in the bulk phase. The effects of pore size and surface electric potential on the phase diagram and microscopic structures of the confined electrolytes were studied over a broad range of parameters. We found that decreasing the pore size or increasing the surface potential could destabilize the liquid phase in micropores, and capillary evaporation could occur regardless of the size asymmetry between cations and anions. Compared to that in a symmetric ionic system, the vapor-liquid phase separation is more likely to take place as the size asymmetry becomes more pronounced. The phase transition would alter the "accessibility" of ions to micropores and lead to coexisting micropores with different surface charge densities as identified by Monte Carlo simulation.
Collapse
Affiliation(s)
- Kun Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92507, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92507, USA
| |
Collapse
|
5
|
Aqua JN, Fisher ME. Critical charge and density coupling in ionic spherical models. Phys Rev E 2019; 100:052145. [PMID: 31869903 DOI: 10.1103/physreve.100.052145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 11/07/2022]
Abstract
We investigate ionic criticality on the basis of a specially devised spherical model that accounts both for Coulomb and nonionic forces in binary systems. We show in detail here the consequences of the entanglement of density and charge correlation functions G_{NN} and G_{ZZ} on criticality and screening. We also show on this soluble model how, because of electroneutrality, the long-range Coulomb interactions do not change the universality class of criticality in the model driven primarily by sufficiently attractive nonionic interactions. Near criticality, G_{NN} and G_{ZZ} are fully decoupled in charge symmetric systems. However, in more realistic nonsymmetric models, charge and density fluctuations couple in leading order so that the charge and density correlation lengths diverge asymptotically in a similar way. Similarly, the Stillinger-Lovett sum rule, which characterizes a conducting fluid, is violated at criticality in nonsymmetric models when the critical-point density-decay exponent η vanishes. In addition, if quantum effects are accounted for semiclassically by incorporating algebraically decaying interactions, G_{ZZ} decays only as a power law in the whole phase space, contrary to the usually expected exponential Debye screening. We expect these results on this soluble toy model to be general and to reveal general mechanisms ruling ionic criticality.
Collapse
Affiliation(s)
- Jean-Noël Aqua
- Sorbonne Université, CNRS, Institut des Nanosciences de Paris, INSP, UMR 7588, 4 place Jussieu, 75005 Paris, France
| | - Michael E Fisher
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
6
|
Rodríguez-Rivas A, Romero-Enrique JM, Rull LF. Molecular simulation study of the glass transition in a soft primitive model for ionic liquids. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1674935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - J. M. Romero-Enrique
- Departamento de Física Atómica, Molecular y Nuclear, Area de Física Teórica, Universidad de Sevilla, Sevilla, Spain
| | - L. F. Rull
- Departamento de Física Atómica, Molecular y Nuclear, Area de Física Teórica, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
7
|
Patsahan O, Patsahan T. Phase behaviour in ionic solutions: Restricted primitive model of ionic liquid in explicit neutral solvent. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Kalyuzhnyi Y, Reščič J, Holovko M, Cummings P. Primitive models of room temperature ionic liquids. Liquid-gas phase coexistence. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Patsahan O, Patsahan T, Holovko M. Vapour-liquid critical parameters of a 2:1 primitive model of ionic fluids confined in disordered porous media. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Patsahan OV, Patsahan TM, Holovko MF. Vapor-liquid phase behavior of a size-asymmetric model of ionic fluids confined in a disordered matrix: The collective-variables-based approach. Phys Rev E 2018; 97:022109. [PMID: 29548228 DOI: 10.1103/physreve.97.022109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 11/07/2022]
Abstract
We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature T_{c}^{*} and the critical density ρ_{i,c}^{*} become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of T_{c}^{*} and ρ_{i,c}^{*} and even to a disappearance of the phase transition, especially for the case of small matrix particles.
Collapse
Affiliation(s)
- O V Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv, Ukraine
| | - T M Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv, Ukraine
| | - M F Holovko
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv, Ukraine
| |
Collapse
|
11
|
Holovko M, Patsahan T, Patsahan O. Application of the ionic association concept to the study of the phase behaviour of size-asymmetric ionic fluids in disordered porous media. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Holovko M, Patsahan T, Patsahan O. Effects of disordered porous media on the vapour-liquid phase equilibrium in ionic fluids: application of the association concept. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Lindenberg EK, Patey GN. Melting point trends and solid phase behaviors of model salts with ion size asymmetry and distributed cation charge. J Chem Phys 2015; 143:024508. [DOI: 10.1063/1.4923344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- E. K. Lindenberg
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - G. N. Patey
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
14
|
Barros K, Luijten E. Dielectric effects in the self-assembly of binary colloidal aggregates. PHYSICAL REVIEW LETTERS 2014; 113:017801. [PMID: 25032932 DOI: 10.1103/physrevlett.113.017801] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Indexed: 06/03/2023]
Abstract
Electrostatic interactions play an important role in numerous self-assembly phenomena, including colloidal aggregation. Although colloids typically have a dielectric constant that differs from the surrounding solvent, the effective interactions that arise from inhomogeneous polarization charge distributions are generally neglected in theoretical and computational studies. We introduce an efficient technique to resolve polarization charges in dynamical dielectric geometries, and demonstrate that dielectric effects qualitatively alter the predicted self-assembled structures, with surprising colloidal strings arising from many-body effects.
Collapse
Affiliation(s)
- Kipton Barros
- Department of Materials Science and Engineering and Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA
| | - Erik Luijten
- Department of Materials Science and Engineering and Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
15
|
Daub CD, Åstrand PO, Bresme F. Thermo-molecular orientation effects in fluids of dipolar dumbbells. Phys Chem Chem Phys 2014; 16:22097-106. [DOI: 10.1039/c4cp03511a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plots of first-order (left) and novel second-order (right) thermomolecular orientation effects in fluids of dipolar dumbbells.
Collapse
Affiliation(s)
- Christopher D. Daub
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- Trondheim, Norway
| | - Per-Olof Åstrand
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- Trondheim, Norway
| | - Fernando Bresme
- Department of Chemistry
- Chemical Physics Section
- Imperial College London
- London, UK
- Department of Chemistry
| |
Collapse
|
16
|
Fantoni R, Pastore G. Monte Carlo simulation of the nonadditive restricted primitive model of ionic fluids: phase diagram and clustering. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052303. [PMID: 23767536 DOI: 10.1103/physreve.87.052303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/19/2013] [Indexed: 06/02/2023]
Abstract
We report an accurate Monte Carlo calculation of the phase diagram and clustering properties of the restricted primitive model with nonadditive hard-sphere diameters. At high density the positively nonadditive fluid shows more clustering than in the additive model and the negatively nonadditive fluid shows less clustering than in the additive model; at low density the reverse scenario appears. A negative nonadditivity tends to favor the formation of neutrally charged clusters starting from the dipole. A positive nonadditivity favors the pairing of like ions at high density. The critical point of the gas-liquid phase transition moves at higher temperatures and higher densities for a negative nonadditivity and at lower temperatures and lower densities for a positive nonadditivity. The law of corresponding states does not seem to hold strictly. Our results can be used to interpret recent experimental works on room temperature ionic liquids.
Collapse
Affiliation(s)
- Riccardo Fantoni
- Dipartimento di Scienze dei Materiali e Nanosistemi, Università Ca' Foscari Venezia, Calle Larga S. Marta DD2137, I-30123 Venezia, Italy.
| | | |
Collapse
|
17
|
Patsahan O, Ciach A. Spatial inhomogeneities in ionic liquids, charged proteins, and charge stabilized colloids from collective variables theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031504. [PMID: 23030920 DOI: 10.1103/physreve.86.031504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Indexed: 06/01/2023]
Abstract
Effects of size and charge asymmetry between oppositely charged ions or particles on spatial inhomogeneities are studied for a large range of charge and size ratios. We perform a stability analysis of the primitive model of ionic systems with respect to periodic ordering using the collective variables-based theory. We extend previous studies [Ciach et al., Phys. Rev. E 75, 051505 (2007)] in several ways. First, we employ a nonlocal approximation for the reference hard-sphere fluid which leads to the Percus-Yevick pair direct correlation functions for the uniform case. Second, we use the Weeks-Chandler-Anderson regularization scheme for the Coulomb potential inside the hard core. We determine the relevant order parameter connected with the periodic ordering and analyze the character of the dominant fluctuations along the λ lines. We show that the above-mentioned modifications produce large quantitative and partly qualitative changes in the phase diagrams obtained previously. We discuss possible scenarios of the periodic ordering for the whole range of size and charge ratios of the two ionic species, covering electrolytes, ionic liquids, charged globular proteins or nanoparticles in aqueous solutions, and charge-stabilized colloids.
Collapse
Affiliation(s)
- O Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine
| | | |
Collapse
|
18
|
Bastea S. Thermodynamics and diffusion in size-symmetric and asymmetric dense electrolytes. J Chem Phys 2011; 135:084515. [PMID: 21895207 DOI: 10.1063/1.3629782] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MD simulation results for model size-symmetric and asymmetric electrolytes at high densities and temperatures (well outside the liquid-gas coexistence region) are generated and analyzed focusing on thermodynamic and diffusion properties. An extension of the mean spherical approximation for electrolytes originally derived for charged hard sphere fluids is adapted to these systems by exploiting the separation of short range and Coulomb interaction contributions intrinsic to these theoretical models and is found to perform well for predicting equation of state quantities. The diffusion coefficients of these electrolytes can also be reasonably well predicted using entropy scaling ideas suitably adapted to charged systems and mixtures. Thus, this approach may provide an avenue for studying dense electrolytes or complex molecular systems containing charged species at high pressures and temperatures.
Collapse
Affiliation(s)
- Sorin Bastea
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA.
| |
Collapse
|
19
|
Méndez-Castro P, Troncoso J, Pérez-Sánchez G, Peleteiro J, Romaní L. Thermal properties of ionic systems near the liquid-liquid critical point. J Chem Phys 2011; 135:214507. [DOI: 10.1063/1.3663857] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
20
|
|
21
|
Alejandre J, Bresme F, González-Melchor M. Interfacial properties of charge asymmetric ionic liquids. Mol Phys 2010. [DOI: 10.1080/00268970902780270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Kuzovkov VN, Zvejnieks G, Kotomin EA, Olvera de la Cruz M. Microscopic approach to the kinetics of pattern formation of charged molecules on surfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:021602. [PMID: 20866821 DOI: 10.1103/physreve.82.021602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Indexed: 05/29/2023]
Abstract
A microscopic formalism based on computing many-particle densities is applied to the analysis of the diffusion-controlled kinetics of pattern formation in oppositely charged molecules on surfaces or adsorbed at interfaces with competing long-range Coulomb and short-range Lennard-Jones interactions. Particular attention is paid to the proper molecular treatment of energetic interactions driving pattern formation in inhomogeneous systems. The reverse Monte Carlo method is used to visualize the spatial molecular distribution based on the calculated radial distribution functions (joint correlation functions). We show the formation of charge domains for certain combinations of temperature and dynamical interaction parameters. The charge segregation evolves into quasicrystalline clusters of charges, due to the competing long- and short-range interactions. The clusters initially co-exist with a gas phase of charges that eventually add to the clusters, generating "fingers" or line of charges of the same sign, very different than the nanopatterns expected by molecular dynamics in systems with competing interactions in two dimensions, such as strain or dipolar versus van der Waals interactions.
Collapse
Affiliation(s)
- V N Kuzovkov
- Institute of Solid State Physics, University of Latvia, Riga, Latvia.
| | | | | | | |
Collapse
|
23
|
Qin Y, Zhao K, Liu H, Hu Y. Molecular Thermodynamics of Size Asymmetrical Charged Hard-dumbbell Fluids. MOLECULAR SIMULATION 2010. [DOI: 10.1080/0892702031000122599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Patsahan OV, Patsahan TM. Gas-liquid critical parameters of asymmetric models of ionic fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031110. [PMID: 20365700 DOI: 10.1103/physreve.81.031110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Indexed: 05/29/2023]
Abstract
The effects of size and charge asymmetry on the gas-liquid critical parameters of a primitive model (PM) of ionic fluids are studied within the framework of the statistical field theory based on the collective variables method. Recently, this approach has enabled us to obtain the correct trends of the both critical parameters of the equisize charge-asymmetric PM without assuming ionic association. In this paper, we focus on the general case of an asymmetric PM characterized by the two parameters: hard-sphere diameter, lambda=sigma+/sigma-, and charge, z=q+/|q-|, ratios of the two ionic species. We derive an explicit expression for the chemical potential conjugate to the order parameter which includes the effects of correlations up to the third order. Based on this expression we consider the three versions of PM: a monovalent size-asymmetric PM (lambda not equal 1, z=1) , an equisize charge-asymmetric PM (lambda=1, z not equal 1) and a size- and charge-asymmetric PM (lambda not equal 1, z=2) . Similar to simulations, our theory predicts that the critical temperature and the critical density decrease with the increase in size asymmetry. Regarding the effects of charge asymmetry, we obtain the correct trend of the critical temperature with z , while the trend of the critical density obtained in this approximation is inconsistent with simulations, as well as with our previous results found in the higher-order approximation. We expect that the consideration of the higher-order correlations will lead to the correct trend of the critical density with charge asymmetry.
Collapse
Affiliation(s)
- O V Patsahan
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Str, 79011 Lviv, Ukraine
| | | |
Collapse
|
25
|
Hynninen AP, Panagiotopoulos AZ. Phase diagrams of charged colloids from thermodynamic integration. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:465104. [PMID: 21715902 DOI: 10.1088/0953-8984/21/46/465104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present full phase diagrams (including solid phases) of spherical charged colloids, using Monte Carlo sampling and thermodynamic integration of the Helmholtz free energy. Colloids and their co- and counterions are described by the primitive model for ionic systems that consists of hard-spheres with central point charges, while the solvent is taken into account solely through its dielectric constant. Two systems are considered: (i) a size-asymmetric system of oppositely charged spheres with size ratios q = 0.3 and 0.5 and (ii) a charge- and size-asymmetric system with colloid charge Q = 10 and counterions of charge -1 in the presence of monovalent added salt. In system (i), for both size ratios, the stable solid phase is equivalent to the NaCl crystal where the oppositely charged spheres take the lattice positions of Na and Cl ions. In system (ii), the phase diagram consists of gas-liquid and fluid-solid coexistence regions. We show that added salt stabilizes the fluid phase and shrinks the fluid-solid coexistence region, in agreement with experimental and theoretical results.
Collapse
|
26
|
Zwanikken J, van Roij R. Inflation of the screening length induced by Bjerrum pairs. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:424102. [PMID: 21715837 DOI: 10.1088/0953-8984/21/42/424102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.
Collapse
Affiliation(s)
- Jos Zwanikken
- Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | | |
Collapse
|
27
|
Schröer W, Vale VR. Liquid-liquid phase separation in solutions of ionic liquids: phase diagrams, corresponding state analysis and comparison with simulations of the primitive model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:424119. [PMID: 21715854 DOI: 10.1088/0953-8984/21/42/424119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phase diagrams of ionic solutions of the ionic liquid C(18)mim(+)NTF(2)(-) (1-n-octadecyl-3-methyl imidazolium bistrifluormethylsulfonylimide) in decalin, cyclohexane and methylcyclohexane are reported and compared with that of solutions of other imidazolium ionic liquids with the anions NTF(2)(-), Cl(-) and BF4(-) in arenes, CCl(4), alcohols and water. The phase diagrams are analysed presuming Ising criticality and taking into account the asymmetry of the phase diagrams. The resulting parameters are compared with simulation results for equal-sized charged hard spheres in a dielectric continuum, the restricted primitive model (RPM) and the primitive model (PM) that allows for ions of different size. In the RPM temperature scale the critical temperatures vary almost linearly with the dielectric permittivity of the solvent. The RPM critical temperatures of the solutions in non-polar solvents are very similar, somewhat below the RPM value. Correlations with the boiling temperatures of the solvents and a dependence on the length of the side chain of the imidazolium cations show that dispersion interactions modify the phase transition, which is mainly determined by Coulomb forces. Critical concentrations, widths of the phase diagrams and the slopes of the diameter are different for the solutions in protic and aprotic solvents. The phase diagrams of the solutions in alcohols and water get a lower critical solution point when represented in RPM variables.
Collapse
|
28
|
Saracsan D, Rybarsch C, Schröer W. Phase Separation in Solutions of Room Temperature Ionic Liquids in Hydrocarbons. ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.2006.220.10.1417] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The room temperature ionic liquids (RTIL) trihexyl-tetradecyl phosphonium chloride (P666 14Cl) and the bromide (P666 14Br) are soluble in hydrocarbons. The investigated solutions in heptane, octane, nonane and decane show liquid–liquid phase separation with an upper critical solution point at ambient temperatures at molar fractions near 0.03 of the salt. Phase diagrams are reported and analysed presuming Ising criticality. The critical temperatures and the critical densities increase with the chain length of the hydrocarbons, where the figures corresponding to the bromides are above that of the chlorides. Scaled by the critical data the phase diagrams show corresponding state behaviour. In accordance with the prediction of the restricted primitive model (RPM), which is a model fluid of equal sized, charged hard spheres in a dielectric continuum, the critical points are located at low temperature and low concentration, when the corresponding state variables of this model are used. However, the critical temperature T
c
* and the critical density ρc
* are well below the figures of the RPM prediction. Comparison is made with the phase diagrams of alcohol solutions of imidazolium ionic liquids and with simulation results of the RPM.
Collapse
|
29
|
Martín-Betancourt M, Romero-Enrique JM, Rull LF. Liquid−Vapor Coexistence in a Primitive Model for a Room-Temperature Ionic Liquid. J Phys Chem B 2009; 113:9046-9. [DOI: 10.1021/jp903709k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marianela Martín-Betancourt
- Departamento de Física Atómica, Molecular y Nuclear, Area de Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla, Spain
| | - José M. Romero-Enrique
- Departamento de Física Atómica, Molecular y Nuclear, Area de Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla, Spain
| | - Luis F. Rull
- Departamento de Física Atómica, Molecular y Nuclear, Area de Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla, Spain
| |
Collapse
|
30
|
Liquid–liquid phase transition in the ionic solutions of tetra-n-butylammonium chloride in o-xylene and ethylbenzene: Phase diagrams and corresponding state analysis. J Mol Liq 2009. [DOI: 10.1016/j.molliq.2008.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Chung TH, Lee LL. The mean activity coefficients of 2:2 electrolyte solutions: An integral equation study of the restricted primitive model. J Chem Phys 2009; 130:134513. [DOI: 10.1063/1.3099335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Hynninen AP, Panagiotopoulos AZ. Simulations of phase transitions and free energies for ionic systems. Mol Phys 2008. [DOI: 10.1080/00268970802112160] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Liquid-liquid phase transition in solutions of ionic liquids with halide anions: Criticality and corresponding states. PURE APPL CHEM 2008. [DOI: 10.1351/pac200880071613] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Measurements of the liquid-liquid phase diagrams of solutions of the ionic liquids (ILs) 1-dodecyl-3-methylimidazolium chloride (C12mimCl) in arenes (benzene, toluene, o-xylene, tetraline) and 1-tetradecyl-3-methylimidazolium chloride (C14mimCl) in CCl4 are reported and compared with those of solutions of trihexyl-tetradecyl-phosphonium halides (P666 14Cl, P666 14Br) in hydrocarbons and 1-alkyl-3-methylimidazolium tetrafluoroborates (CnmimBF4) in alcohols and water. The phase diagrams of solutions of tetrapentyl-ammonium bromide (N5555Br) in water and KI in SO2 are also discussed. Except for the KI/SO2 system, which features a lower critical solution point (LCSP), all systems have an upper critical solution point (UCSP) and show corresponding-states behavior. The experimental data are compared with results from simulations and theory concerning the model fluid of charged hard spheres in a dielectric continuum, termed restricted primitive model (RPM). The analysis in terms of of RPM variables shows agreement with the location of the critical point (CP) of the model with noticeable systematic deviations. However, for protic solvents, the CP becomes an LCSP, while in aprotic solvents the CP is a UCSP as expected for Coulomb systems. This indicates that in aprotic solvents, the phase transition is essentially determined by the Coulomb interactions, while in the solutions in protic solvents with hydrogen bonds, both Coulomb and solvophobic interactions are important.
Collapse
|
34
|
Douglas JF, Dudowicz J, Freed KF. Lattice model of equilibrium polymerization. VI. Measures of fluid “complexity” and search for generalized corresponding states. J Chem Phys 2007; 127:224901. [DOI: 10.1063/1.2785187] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Ciach A, Góźdź WT, Stell G. Field theory for size- and charge-asymmetric primitive model of ionic systems: mean-field stability analysis and pretransitional effects. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:051505. [PMID: 17677071 DOI: 10.1103/physreve.75.051505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Indexed: 05/16/2023]
Abstract
The primitive model of ionic systems is investigated within a field-theoretic description for the whole range of diameter-, lambda , and charge, Z ratios of the two ionic species. Two order parameters (OP) are identified. The relation of the OP's to physically relevant quantities is nontrivial. Each OP is a linear combination of the charge density and the number-density waves. Instabilities of the disordered phase associated with the two OP's are determined in the mean-field approximation (MF). In MF a gas-liquid separation occurs for any Z and lambda is not equal to 1 . In addition, an instability with respect to various types of periodic ordering of the two kinds of ions is found. Depending on lambda and Z , one or the other transition is metastable in different thermodynamic states. For sufficiently large size disparity we find a sequence of fluid-crystal-fluid transitions for the increasing volume fraction of ions, in agreement with experimental observations. The instabilities found in MF represent weak ordering of the most probable instantaneous states, and are identified with structural loci associated with pretransitional effects.
Collapse
Affiliation(s)
- A Ciach
- Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa, Poland
| | | | | |
Collapse
|
36
|
Avendaño C, Gil-Villegas A. Monte Carlo simulations of primitive models for ionic systems using the Wolf method. Mol Phys 2006. [DOI: 10.1080/00268970600551155] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Van Workum K, Douglas JF. Symmetry, equivalence, and molecular self-assembly. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:031502. [PMID: 16605527 DOI: 10.1103/physreve.73.031502] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Indexed: 05/08/2023]
Abstract
Molecular self-assembly at equilibrium is fundamental to the fields of biological self-organization, the development of novel environmentally responsive polymeric materials, and nanofabrication. Our approach to understanding the principles governing this process is inspired by existing models and measurements for the self-assembly of actin, tubulin, and the ubiquitous icosahedral shell structures of viral capsids. We introduce a family of simple potentials that give rise to the self-assembly of linear polymeric, random surface ("membrane"), tubular ("nanotube"), and hollow icosahedral structures that are similar in many respects to their biological counterparts. The potentials involve equivalent particles and an interplay between directional (dipolar, multipolar) and short-range (van der Waals) interactions. Specifically, we find that the dipolar potential, having a continuous rotational symmetry about the dipolar axis, gives rise to chain formation, while particles with multipolar potentials, having discrete rotational symmetries (square quadrupole or triangular ring of dipoles or "hexapole"), lead to the self-assembly of open sheet, nanotube, and hollow icosahedral geometries. These changes in the geometry of self-assembly are accompanied by significant changes in the kinetics of the organization.
Collapse
Affiliation(s)
- Kevin Van Workum
- National Institute of Standards and Technology, Polymers Division, Gaithersburg, Maryland 20899, USA.
| | | |
Collapse
|
38
|
Caballero JB, Puertas AM, Fernández-Barbero A, Javier de Las Nieves F, Romero-Enrique JM, Rull LF. Liquid-gas separation in colloidal electrolytes. J Chem Phys 2006; 124:054909. [PMID: 16468920 DOI: 10.1063/1.2159481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The liquid-gas transition of an electroneutral mixture of oppositely charged colloids, studied by Monte Carlo simulations, is found in the low-temperature-low-density region. The critical temperature shows a nonmonotonous behavior as a function of the interaction range, kappa(-1), with a maximum at kappasigma approximately 10, implying an island of coexistence in the kappa-rho plane. The system is arranged in such a way that each particle is surrounded by shells of particles with alternating charge. In contrast with the electrolyte primitive model, both neutral and charged clusters are obtained in the vapor phase.
Collapse
Affiliation(s)
- José B Caballero
- Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, 04120 Almeria, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Hynninen AP, Dijkstra M. Melting line of charged colloids from primitive model simulations. J Chem Phys 2005; 123:244902. [PMID: 16396568 DOI: 10.1063/1.2138693] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop an efficient simulation method to study suspensions of charged spherical colloids using the primitive model. In this model, the colloids and the co- and counterions are represented by charged hard spheres, whereas the solvent is treated as a dielectric continuum. In order to speed up the simulations, we restrict the positions of the particles to a cubic lattice, which allows precalculation of the Coulombic interactions at the beginning of the simulation. Moreover, we use multiparticle cluster moves that make the Monte Carlo sampling more efficient. The simulations are performed in the semigrand canonical ensemble, where the chemical potential of the salt is fixed. Employing our method, we study a system consisting of colloids carrying a charge of 80 elementary charges and monovalent co- and counterions. At the colloid densities of our interest, we show that lattice effects are negligible for sufficiently fine lattices. We determine the fluid-solid melting line in a packing fraction eta-inverse screening length kappa plane and compare it with the melting line of charged colloids predicted by the Yukawa potential of the Derjaguin-Landau-Verwey-Overbeek theory. We find qualitative agreement with the Yukawa results, and we do not find any effects of many-body interactions. We discuss the difficulties involved in the mapping between the primitive model and the Yukawa model at high colloid packing fractions (eta>0.2).
Collapse
Affiliation(s)
- Antti-Pekka Hynninen
- Soft Condensed Matter Group, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | | |
Collapse
|
40
|
Zhou W, Percus JK. Size-asymmetric primitive model at low temperature: description of ion pairing and location of the critical point. PHYSICAL REVIEW LETTERS 2005; 95:235701. [PMID: 16384317 DOI: 10.1103/physrevlett.95.235701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Indexed: 05/05/2023]
Abstract
We argue that Bjerrum's approach to ion pairing is inappropriate for the size-asymmetric primitive model in the neighborhood of its critical point, and propose a new approach based on the Stillinger-Lovett pairing procedure. The new approach recursively scales up the ion size until linear approximations are suitable for analyzing such a model. To locate the critical point, a residual van der Waals interaction between pairs is added, with an energy cutoff adjusted to match the critical temperature of the restricted primitive model. The locations and downward trends of T(c) and rho(c) with asymmetry are found to compare favorably with simulations.
Collapse
Affiliation(s)
- Weimin Zhou
- Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA
| | | |
Collapse
|
41
|
Cheong DW, Panagiotopoulos * AZ. Phase behaviour of polyampholyte chains from grand canonical Monte Carlo simulations. Mol Phys 2005. [DOI: 10.1080/00268970500186045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Kim YC, Fisher ME, Panagiotopoulos AZ. Universality of ionic criticality: size- and charge-asymmetric electrolytes. PHYSICAL REVIEW LETTERS 2005; 95:195703. [PMID: 16383996 DOI: 10.1103/physrevlett.95.195703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Indexed: 05/05/2023]
Abstract
Grand-canonical simulations designed to resolve critical universality classes are reported for z:1 hard-core electrolyte models with diameter ratios lambda=a+/a- less than or approximately equal 6. For z=1 Ising-type behavior prevails. Unbiased estimates of Tc(lambda) are within 1% of previous (biased) estimates but the critical densities are approximately 5% lower. Ising character is also established for the 2:1 and 3:1 equisized models, along with critical amplitudes and improved Tc estimates. For z=3, however, strong finite-size effects reduce the confidence level although classical and O (n>or=3) criticality are excluded.
Collapse
Affiliation(s)
- Young C Kim
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
43
|
Aqua JN, Banerjee S, Fisher ME. Criticality in charge-asymmetric hard-sphere ionic fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:041501. [PMID: 16383379 DOI: 10.1103/physreve.72.041501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Indexed: 05/05/2023]
Abstract
Phase separation and criticality are analyzed in z:1 charge-asymmetric ionic fluids of equisized hard spheres by generalizing the Debye-Hückel approach combined with ionic association, cluster solvation by charged ions, and hard-core interactions, following lines developed by Fisher and Levin for the 1:1 case (i.e., the restricted primitive model). Explicit analytical calculations for 2:1 and 3:1 systems account for ionic association into dimers, trimers, and tetramers and subsequent multipolar cluster solvation. The reduced critical temperatures, Tc* (normalized by z), decrease with charge asymmetry, while the critical densities increase rapidly with . The results compare favorably with simulations and represent a distinct improvement over all current theories such as the mean spherical approximation, symmetric Poisson-Boltzmann theory, etc. For z not equal to 1, the interphase Galvani (or absolute electrostatic) potential difference, Deltaphi(T), between coexisting liquid and vapor phases is calculated and found to vanish as absolute value (T-Tc) beta when T-->Tc-with, since our approximations are classical, beta = (1/2). Above Tc, the compressibility maxima and so-called k-inflection loci (which aid the fast and accurate determination of the critical parameters) are found to exhibit a strong z dependence.
Collapse
Affiliation(s)
- Jean-Noël Aqua
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 USA
| | | | | |
Collapse
|
44
|
Kalyuzhnyi YV, Kahl G, Cummings PT. Phase coexistence in a polydisperse charged hard-sphere fluid: Polymer mean spherical approximation. J Chem Phys 2005; 123:124501. [PMID: 16392492 DOI: 10.1063/1.2042347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have reconsidered the phase behavior of a polydisperse mixture of charged hard spheres (CHSs) introducing the concept of minimal size neutral clusters. We thus take into account ionic association effects observed in charged systems close to the phase boundary where the properties of the system are dominated by the presence of neutral clusters while the amount of free ions or charged clusters is negligible. With this concept we clearly pass beyond the simple level of the mean spherical approximation (MSA) that we have presented in our recent study of a polydisperse mixture of CHS [Yu. V. Kalyuzhnyi, G. Kahl, and P. T. Cummings, J. Chem. Phys. 120, 10133 (2004)]. Restricting ourselves to a 1:1 and possibly size-asymmetric model we treat the resulting polydisperse mixture of neutral, polar dimers within the framework of the polymer MSA, i.e., a concept that--similar as the MSA--readily can be generalized from the case of a mixture with a finite number of components to the polydisperse case: again, the model belongs to the class of truncatable free-energy models so that we can map the formally infinitely many coexistence equations onto a finite set of coupled, nonlinear equations in the generalized moments of the distribution function that characterizes the system. This allows us to determine the full phase diagram (in terms of binodals as well as cloud and shadow curves), we can study fractionation effects on the level of the distribution functions of the coexisting daughter phases, and we propose estimates on how the location of the critical point might vary in a polydisperse mixture with an increasing size asymmetry and polydispersity.
Collapse
Affiliation(s)
- Yurij V Kalyuzhnyi
- Institute for Condensed Matter Physics, Svientsitskoho 1, 79011 Lviv, Ukraine.
| | | | | |
Collapse
|
45
|
Hynninen AP, Dijkstra M, Panagiotopoulos AZ. Critical point of electrolyte mixtures. J Chem Phys 2005; 123:084903. [PMID: 16164326 DOI: 10.1063/1.1979490] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The critical behavior of electrolyte mixtures was studied using grand canonical Monte Carlo simulations. Mixtures consist of large multivalent macroions and small monovalent co- and counterions. The system can be viewed as a binary mixture of macroions (with their counterions) and salt (co- and counterion pair). The primitive model description was used, in which the ions are point charges with a hard core and the solvent is treated as a uniform dielectric continuum. The grand canonical simulations are based on insertions and removals of neutral molecules: macroion with its counterions or coions and a counterion. We propose a distance biasing method that enables direct grand canonical simulations up to charge asymmetry of 10:1. We calculated the critical loci that connect the salt-free state, which consists of only macroions and counterions, with the pure salt state using mixed-field finite-size scaling with no pressure mixing. The critical parameters are determined for macroion to counterion charge asymmetries of 2:1, 3:1, and 10:1. Our results suggest that binary electrolyte mixtures are type-I mixtures, where the two components mix continuously.
Collapse
Affiliation(s)
- Antti-Pekka Hynninen
- Soft Condensed Matter Group, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | | | | |
Collapse
|
46
|
Bhuiyan LB, Outhwaite CW, Henderson D. A modified Poisson–Boltzmann analysis of the capacitance behavior of the electric double layer at low temperatures. J Chem Phys 2005; 123:34704. [PMID: 16080752 DOI: 10.1063/1.1992427] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The modified Poisson-Boltzmann theory is used to analyze the anomalous behavior of the electric double layer capacitance for small surface charge at low temperatures and densities. Good agreement is found with simulation and recent density-functional theory results. Negative adsorption is also found in line with theory and simulation. An unsatisfactory feature is the relatively poor structure in this region due to the inherent approximations in the theory. This feature is unimportant in relation to the capacitance results but has implications when calculating adsorption properties.
Collapse
Affiliation(s)
- L B Bhuiyan
- Laboratory of Theoretical Physics, Department of Physics, University of Puerto Rico, San Juan.
| | | | | |
Collapse
|
47
|
Rydén J, Ullner M, Linse P. Monte Carlo simulations of oppositely charged macroions in solution. J Chem Phys 2005; 123:34909. [PMID: 16080765 DOI: 10.1063/1.1949191] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The structure and phase behavior of oppositely charged macroions in solution have been studied with Monte Carlo simulations using the primitive model where the macroions and small ions are described as charged hard spheres. Size and charge symmetric, size asymmetric, and charge asymmetric macroions at different electrostatic coupling strengths are considered, and the properties of the solutions have been examined using cluster size distribution functions, structure factors, and radial distribution functions. At increasing electrostatic coupling, the macroions form clusters and eventually the system displays a phase instability, in analogy to that of simple electrolyte solutions. The relation to the similar cluster formation and phase instability occurring in solutions containing oppositely charged polymers is also discussed.
Collapse
Affiliation(s)
- Jens Rydén
- Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | |
Collapse
|
48
|
Pizio O, Sokołowski S. Phase behavior of the restricted primitive model of ionic fluids with association in slitlike pores. Density-functional approach. J Chem Phys 2005; 122:144707. [PMID: 15847553 DOI: 10.1063/1.1883165] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present results of investigations of condensation of restricted primitive model of electrolyte solutions with association between oppositely charged ions confined to slitlike pores. The associative interaction leads to the formation of ionic pairs. It is accounted for by incorporating the first-order thermodynamic perturbation theory into the free energy functional. In order to elucidate the role of association, the phase diagrams are compared with those obtained by us recently [O. Pizio et al., J. Chem. Phys. 121, 11957 (2004)] for the restricted primitive model. The inclusion of the association into the theory leads to lowering the critical temperature for the fluid confined to pores with uncharged and with charged walls. We have observed that the average fraction of bonded ions is high along the coexistence envelope.
Collapse
Affiliation(s)
- O Pizio
- Instituto de Química de la UNAM, Coyoacán 04510, D.F., Mexico.
| | | |
Collapse
|
49
|
Diehl A, Panagiotopoulos AZ. Phase diagrams in the lattice restricted primitive model: from order-disorder to gas-liquid phase transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:046118. [PMID: 15903737 DOI: 10.1103/physreve.71.046118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Indexed: 05/02/2023]
Abstract
The phase behavior of the lattice restricted primitive model (RPM) for ionic systems with additional short-range nearest neighbor (NN) repulsive interactions has been studied by grand canonical Monte Carlo simulations. We obtain a rich phase behavior as the NN strength is varied. In particular, the phase diagram is very similar to that of the continuum RPM for high NN strength. Specifically, we have found both gas-liquid phase separation, with associated Ising critical point, and a first-order liquid-solid transition. We discuss how the line of continuous order-disorder transitions present for the low NN strength changes into continuum-space behavior as one increases the NN strength and compare our findings with recent theoretical results by Ciach and Stell [Phys. Rev. Lett. 91, 060601 (2003)].
Collapse
Affiliation(s)
- Alexandre Diehl
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, CEP 60455-760, Fortaleza, Ceará, Brazil.
| | | |
Collapse
|
50
|
González-Melchor M, Bresme F, Alejandre J. Molecular dynamics simulations of the surface tension of ionic liquids. J Chem Phys 2005; 122:104710. [PMID: 15836348 DOI: 10.1063/1.1861878] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report molecular dynamics computer simulations of the surface tension and interfacial thickness of ionic liquid-vapor interfaces modeled with a soft core primitive model potential. We find that the surface tension shows an anomalous oscillatory behavior with interfacial area. This observation is discussed in terms of finite size effects introduced by the periodic boundary conditions employed in computer simulations. Otherwise we show that the thickness of the liquid-vapor interface increases with surface area as predicted by the capillary wave theory. Data on the surface tension of size-asymmetric ionic liquids are reported and compared with experimental data of molten salts. Our data suggest that the surface tensions of size-asymmetric ionic liquids do not follow a corresponding states law.
Collapse
|