1
|
Maegochi S, Ienaga K, Okuma S. Evidence of second-order transition and critical scaling for the dynamical ordering transition in current-driven vortices. Sci Rep 2024; 14:1232. [PMID: 38216709 PMCID: PMC10786941 DOI: 10.1038/s41598-024-51534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024] Open
Abstract
Dynamical ordering from a disordered plastic flow to an anisotropically ordered smectic flow induced by a dc force has been studied in various many-particle systems, including vortices in type-II superconductors. However, it remains unclear whether the dynamical ordering is a true phase transition because of lack of suitable experimental methods. Here, we study the response of vortex flow to the transverse force using a cross-shaped amorphous Mo[Formula: see text]Ge[Formula: see text] film. From transverse current-voltage (force-velocity) characteristics under various longitudinal currents, we find a change of the transverse response in low voltage (velocity) regions from a nonlinear to linear behavior at a well-defined longitudinal current that marks the dynamical ordering transition. We also find the scaling collapse of the transverse current-voltage curves to a universal scaling function, providing evidence of the second-order transition for the dynamical ordering transition.
Collapse
Affiliation(s)
- S Maegochi
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - K Ienaga
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - S Okuma
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
2
|
Čulo M, Licciardello S, Ishida K, Mukasa K, Ayres J, Buhot J, Hsu YT, Imajo S, Qiu MW, Saito M, Uezono Y, Otsuka T, Watanabe T, Kindo K, Shibauchi T, Kasahara S, Matsuda Y, Hussey NE. Expanded quantum vortex liquid regimes in the electron nematic superconductors FeSe 1-xS x and FeSe 1-xTe x. Nat Commun 2023; 14:4150. [PMID: 37438333 DOI: 10.1038/s41467-023-39730-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2023] [Indexed: 07/14/2023] Open
Abstract
The quantum vortex liquid (QVL) is an intriguing state of type-II superconductors in which intense quantum fluctuations of the superconducting (SC) order parameter destroy the Abrikosov lattice even at very low temperatures. Such a state has only rarely been observed, however, and remains poorly understood. One of the key questions is the precise origin of such intense quantum fluctuations and the role of nearby non-SC phases or quantum critical points in amplifying these effects. Here we report a high-field magnetotransport study of FeSe1-xSx and FeSe1-xTex which show a broad QVL regime both within and beyond their respective electron nematic phases. A clear correlation is found between the extent of the QVL and the strength of the superconductivity. This comparative study enables us to identify the essential elements that promote the QVL regime in unconventional superconductors and to demonstrate that the QVL regime itself is most extended wherever superconductivity is weakest.
Collapse
Affiliation(s)
- M Čulo
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, Netherlands.
- Institut za fiziku, Bijenička cesta 46, HR-10000, Zagreb, Croatia.
| | - S Licciardello
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, Netherlands
| | - K Ishida
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - K Mukasa
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - J Ayres
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - J Buhot
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Y-T Hsu
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, Netherlands
- Center for Theory and Computation, National Tsing Hua University, No. 101, Section. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - S Imajo
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - M W Qiu
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - M Saito
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Y Uezono
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - T Otsuka
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - T Watanabe
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - K Kindo
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - T Shibauchi
- Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - S Kasahara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-Ku, Okayama, 700-8530, Japan
| | - Y Matsuda
- Department of Physics, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - N E Hussey
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, Netherlands.
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK.
| |
Collapse
|
3
|
Liu W, Pan L, Wen J, Kim M, Sambandamurthy G, Armitage NP. Microwave spectroscopy evidence of superconducting pairing in the magnetic-field-induced metallic state of InO(x) films at zero temperature. PHYSICAL REVIEW LETTERS 2013; 111:067003. [PMID: 23971604 DOI: 10.1103/physrevlett.111.067003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Indexed: 06/02/2023]
Abstract
We investigate the field-tuned quantum phase transition in a 2D low-disorder amorphous InO(x) film in the frequency range of 0.05 to 16 GHz employing microwave spectroscopy. In the zero-temperature limit, the ac data are consistent with a scenario where this transition is from a superconductor to a metal instead of a direct transition to an insulator. The intervening metallic phase is unusual with a small but finite resistance that is much smaller than the normal state sheet resistance at the lowest measured temperatures. Moreover, it exhibits a superconducting response on short length and time scales while global superconductivity is destroyed. We present evidence that the true quantum critical point of this 2D superconductor metal transition is located at a field B(sm) far below the conventionally defined critical field B(cross) where different isotherms of magnetoresistance cross each other. The superfluid stiffness in the low-frequency limit and the superconducting fluctuation frequency from opposite sides of the transition both vanish at B≈B(sm). The lack of evidence for finite-frequency superfluid stiffness surviving B(cross) signifies that B(cross) is a crossover above which superconducting fluctuations make a vanishing contribution to dc and ac measurements.
Collapse
Affiliation(s)
- Wei Liu
- Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
4
|
Okuma S, Kobayashi M, Kamada M. Anomalous vortex motion in the quantum-liquid phase of amorphous MoxSi1-x films. PHYSICAL REVIEW LETTERS 2005; 94:047003. [PMID: 15783585 DOI: 10.1103/physrevlett.94.047003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 05/24/2023]
Abstract
We measure, in real time (t), the fluctuating component of the flux-flow voltage V(t), deltaV(t) identical withV(t)-V0, about the average V0 in the vortex-liquid phase of amorphous MoxSi1-x films. For the thick film, deltaV(t) originating from the vortex motion is clearly visible in the quantum-liquid phase, where the distribution of deltaV(t) is asymmetric, indicative of large velocity and/or number fluctuations of driven vortices. For the thin film the similar anomalous vortex motion is observed in nearly the same (reduced-)temperature regime. These results suggest that vortex dynamics in the low-temperature liquid phase of thick and thin films is dominated by common physical mechanisms, presumably related to quantum effects.
Collapse
Affiliation(s)
- S Okuma
- Research Center for Low Temperature Physics, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8551, Japan
| | | | | |
Collapse
|
5
|
Bustarret E, Kacmarcik J, Marcenat C, Gheeraert E, Cytermann C, Marcus J, Klein T. Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films. PHYSICAL REVIEW LETTERS 2004; 93:237005. [PMID: 15601192 DOI: 10.1103/physrevlett.93.237005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Indexed: 05/24/2023]
Abstract
Homoepitaxial diamond layers doped with boron in the 10(20)-10(21) cm(-3) range are shown to be type II superconductors with sharp transitions (approximately 0.2 K) at temperatures increasing from 0 to 2.1 K with boron contents. The critical concentration for the onset of superconductivity in those 001-oriented single-crystalline films is about 5-7 10(20) cm(-3). The H-T phase diagram has been obtained from transport and ac-susceptibility measurements down to 300 mK.
Collapse
Affiliation(s)
- E Bustarret
- Laboratoire d'Etudes des Propriétés Electroniques des Solides, CNRS, B.P.166, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Okuma S, Togo S, Morita M. Enhancement of the quantum-liquid phase by increased resistivity in thick a-MoxSi1-x films. PHYSICAL REVIEW LETTERS 2003; 91:067001. [PMID: 12935101 DOI: 10.1103/physrevlett.91.067001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2002] [Indexed: 05/24/2023]
Abstract
Effects of normal-state resistivity rho(n) on the vortex phase diagram at low temperature T have been studied based on dc and ac complex resistivities for thick amorphous MoxSi(1-x) films. It is commonly observed irrespective of rho(n) that, in the limit T=0, the vortex-glass-transition line B(g)(T) is independent of T and extrapolates to a field below the T=0 upper critical field B(c2)(0), indicative of the quantum-vortex-liquid (QVL) phase in the regime B(g)(0)<B<B(c2)(0). The relative width of the QVL phase increases along the B and T axes approximately proportional to rho(n). This result is consistent with a view that the QVL phase is caused by strong quantum fluctuations, which are enhanced with increasing rho(n).
Collapse
Affiliation(s)
- S Okuma
- Research Center for Low Temperature Physics, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8551, Japan
| | | | | |
Collapse
|