1
|
Ghosh S, Mukherjee A, Arroyave R, Douglas JF. Impact of particle arrays on phase separation composition patterns. J Chem Phys 2020; 152:224902. [PMID: 32534548 DOI: 10.1063/5.0007859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We examine the symmetry-breaking effect of fixed constellations of particles on the surface-directed spinodal decomposition of binary blends in the presence of particles whose surfaces have a preferential affinity for one of the components. Our phase-field simulations indicate that the phase separation morphology in the presence of particle arrays can be tuned to have a continuous, droplet, lamellar, or hybrid morphology depending on the interparticle spacing, blend composition, and time. In particular, when the interparticle spacing is large compared to the spinodal wavelength, a transient target pattern composed of alternate rings of preferred and non-preferred phases emerges at early times, tending to adopt the symmetry of the particle configuration. We reveal that such target patterns stabilize for certain characteristic length, time, and composition scales characteristic of the pure phase-separating mixture. To illustrate the general range of phenomena exhibited by mixture-particle systems, we simulate the effects of single-particle, multi-particle, and cluster-particle systems having multiple geometrical configurations of the particle characteristic of pattern substrates on phase separation. Our simulations show that tailoring the particle configuration, or substrate pattern configuration, a relative fluid-particle composition should allow the desirable control of the phase separation morphology as in block copolymer materials, but where the scales accessible to this approach of organizing phase-separated fluids usually are significantly larger. Limited experiments confirm the trends observed in our simulations, which should provide some guidance in engineering patterned blend and other mixtures of technological interest.
Collapse
Affiliation(s)
- Supriyo Ghosh
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Arnab Mukherjee
- Center for Hierarchical Materials Design, Northwestern University, Evanston, Illinois 60208, USA
| | - Raymundo Arroyave
- Materials Science and Engineering Department, Texas A&M University, College Station, Texas 77843, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
2
|
Abstract
A solution may be in one of three states: stable, unstable, or metastable. If the solution is unstable, phase separation is spontaneous and proceeds by spinodal decomposition. If the solution is metastable, the solution must overcome an activation barrier for phase separation to proceed spontaneously. This mechanism is called nucleation and growth. Manipulating morphology using phase separation has been of great research interest because of its practical use to fabricate functional materials. The Cahn–Hilliard theory, incorporating Flory–Huggins free energy, has been used widely and successfully to model phase separation by spinodal decomposition in the unstable region. This model is used in this paper to mathematically model and numerically simulate the phase separation by nucleation and growth in the metastable state for a binary solution. Our numerical results indicate that Cahn–Hilliard theory is able to predict phase separation in the metastable region but in a region near the spinodal line.
Collapse
|
3
|
Li YC, Shi RP, Wang CP, Liu XJ, Wang Y. Predicting microstructures in polymer blends under two-step quench in two-dimensional space. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:041502. [PMID: 21599164 DOI: 10.1103/physreve.83.041502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Indexed: 05/30/2023]
Abstract
The formation of nanostructures during two-step quench in binary polymer systems having various types of liquid miscibility gaps are investigated systematically via computer simulations using the phase field method. Coupled liquid spinodal decomposition and fluid flow processes are considered by solving simultaneously the Cahn-Hilliard and Navier-Stokes equations. Various interesting phenomena and morphological patterns are predicted. It is found that the primary microstructures developed at the first quench and isothermal holding temperature greatly affect the secondary microstructures developed during the second quench and isothermal holding. Depending on the morphology and scale of the primary microstructure, either multicore and multishell or unicore and unishell structures are predicted. The breakup of annuluses in a core-shell structure in two dimensions is analyzed. The effects of viscosity on the formation of core-shell structure and on the growth and coarsening behaviors of bimodal droplets produced by the two-step quench in systems are also investigated.
Collapse
Affiliation(s)
- Y C Li
- Department of Materials Science and Engineering, College of Materials, and Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | | | | | | | | |
Collapse
|
4
|
Yan LT, Li J, Zhang F, Xie XM. Surface-Directed Phase Separation via a Two-Step Quench Process in Binary Polymer Mixture Films with Asymmetry Compositions. J Phys Chem B 2008; 112:8499-506. [DOI: 10.1021/jp801648t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li-Tang Yan
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Jialin Li
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Fengbo Zhang
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xu-Ming Xie
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
5
|
Lenoci L, Camp PJ. Diatom structures templated by phase-separated fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:217-223. [PMID: 18041853 DOI: 10.1021/la702278f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An experimentally motivated model is proposed for the formation of fluid-phase templates corresponding to the porous silica skeletons of diatoms, single-cell organisms found in marine and freshwater environments. It is shown that phase-separation processes on a planar surface may give rise to a quasi-static mold that could direct the deposition of condensing silica to form complex arrays of pores. Calculations show that appropriate fluid templates can be generated for a wide variety of diatom species. The results could be of some biological relevance, but the most significant advance may be the identification of a synthetic strategy for generating complex porous architectures from simple, amorphous materials.
Collapse
Affiliation(s)
- Leonardo Lenoci
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, United Kingdom
| | | |
Collapse
|
6
|
Yan LT, Xie XM. Wetting-layer formation mechanisms of surface-directed phase separation under different quench depths with off-critical compositions in polymer binary mixture. J Chem Phys 2007; 126:064908. [PMID: 17313245 DOI: 10.1063/1.2430526] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Focusing on the off-critical condition, the quench depth dependence of surface-directed phase separation in the polymer binary mixture is numerically investigated by combination of the Cahn-Hilliard-Cook theory and the Flory-Huggins-de Gennes theory. Two distinct situations, i.e., for the wetting, the minority component is preferred by the surface and the majority component is preferred by the surface, are discussed in detail. The simulated results show that the formation mechanism of the wetting layer is affected by both the quench depth and the off-critical extent. Moreover, a diagram, illustrating the formation mechanisms of the wetting layer with various quench depths and compositions, is obtained on the basis of the simulated results. It is found that, when the minority component is preferred by the surface, the growth of the wetting layer can exhibit pure diffusion limited growth law, logarithmic growth law, and Lifshitz-Slyozov growth law. However, when the majority component is preferred by the surface, the wetting layer always grows logarithmically, regardless of the quench depth and the off-critical extent. It is interesting that the surface-induced nucleation can be observed in this case. The simulated results demonstrate that the surface-induced nucleation only occurs below a certain value of the quench depth, and a detailed range about it is calculated and indicated. Furthermore, the formation mechanisms of the wetting layer are theoretically analyzed in depth by the chemical potential gradient.
Collapse
Affiliation(s)
- Li-Tang Yan
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | |
Collapse
|
7
|
Sun Z, Song H. Pattern Evolution Induced by Periodic Temperature Modulation in a Binary Polymeric Mixture. MACROMOL THEOR SIMUL 2006. [DOI: 10.1002/mats.200500086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Yan LT, Xie XM. Numerical Simulation of Surface Effects on Spinodal Decomposition in Polymer Binary Mixture: Quench Depth Dependence. Macromolecules 2006. [DOI: 10.1021/ma0524878] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Tang Yan
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xu-Ming Xie
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Buxton GA, Clarke N. Creating structures in polymer blends via a dissolution and phase-separation process. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:011807. [PMID: 16089993 DOI: 10.1103/physreve.72.011807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Indexed: 05/03/2023]
Abstract
We show how three-dimensional structures can be formed in polymer blends from pre-existing structures. "Tape" of one polymer is inserted into a matrix of an alternative polymer to form an array of parallelepipeds. We subject this regular structure to partial dissolution in the one-phase region, before quenching the system into the two-phase region. The interplay between dissolution and phase separation can result in complex hierarchic structures. In particular, arrays of microchannels of one polymer species can be formed inside the other polymer.
Collapse
|
10
|
Affiliation(s)
- Ian C. Henderson
- Department of Chemistry, University Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Nigel Clarke
- Department of Chemistry, University Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
11
|
Huo Y, Zhang H, Yang Y. The Morphology and Dynamics of the Viscoelastic Microphase Separation of Diblock Copolymers. Macromolecules 2003. [DOI: 10.1021/ma021504f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanli Huo
- Department of Macromolecular Science, Key Lab of Molecular Engineering of Polymers, Ministry of Education of China, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Hongdong Zhang
- Department of Macromolecular Science, Key Lab of Molecular Engineering of Polymers, Ministry of Education of China, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yuliang Yang
- Department of Macromolecular Science, Key Lab of Molecular Engineering of Polymers, Ministry of Education of China, and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|