1
|
Rinner S, Burger F, Gritsch A, Schmitt J, Reiserer A. Erbium emitters in commercially fabricated nanophotonic silicon waveguides. NANOPHOTONICS 2023; 12:3455-3462. [PMID: 38013784 PMCID: PMC10432618 DOI: 10.1515/nanoph-2023-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 11/29/2023]
Abstract
Quantum memories integrated into nanophotonic silicon devices are a promising platform for large quantum networks and scalable photonic quantum computers. In this context, erbium dopants are particularly attractive, as they combine optical transitions in the telecommunications frequency band with the potential for second-long coherence time. Here, we show that these emitters can be reliably integrated into commercially fabricated low-loss waveguides. We investigate several integration procedures and obtain ensembles of many emitters with an inhomogeneous broadening of <2 GHz and a homogeneous linewidth of <30 kHz. We further observe the splitting of the electronic spin states in a magnetic field up to 9 T that freezes paramagnetic impurities. Our findings are an important step toward long-lived quantum memories that can be fabricated on a wafer-scale using CMOS technology.
Collapse
Affiliation(s)
- Stephan Rinner
- Technical University of Munich, TUM School of Natural Sciences, Physics Department and Munich Center for Quantum Science and Technology (MCQST), James-Franck-Straße 1, 85748Garching, Germany
- Max Planck Institute of Quantum Optics, Quantum Networks Group, Hans-Kopfermann-Straße 1, 85748Garching, Germany
| | - Florian Burger
- Technical University of Munich, TUM School of Natural Sciences, Physics Department and Munich Center for Quantum Science and Technology (MCQST), James-Franck-Straße 1, 85748Garching, Germany
- Max Planck Institute of Quantum Optics, Quantum Networks Group, Hans-Kopfermann-Straße 1, 85748Garching, Germany
| | - Andreas Gritsch
- Technical University of Munich, TUM School of Natural Sciences, Physics Department and Munich Center for Quantum Science and Technology (MCQST), James-Franck-Straße 1, 85748Garching, Germany
- Max Planck Institute of Quantum Optics, Quantum Networks Group, Hans-Kopfermann-Straße 1, 85748Garching, Germany
| | - Jonas Schmitt
- Technical University of Munich, TUM School of Natural Sciences, Physics Department and Munich Center for Quantum Science and Technology (MCQST), James-Franck-Straße 1, 85748Garching, Germany
- Max Planck Institute of Quantum Optics, Quantum Networks Group, Hans-Kopfermann-Straße 1, 85748Garching, Germany
| | - Andreas Reiserer
- Technical University of Munich, TUM School of Natural Sciences, Physics Department and Munich Center for Quantum Science and Technology (MCQST), James-Franck-Straße 1, 85748Garching, Germany
- Max Planck Institute of Quantum Optics, Quantum Networks Group, Hans-Kopfermann-Straße 1, 85748Garching, Germany
| |
Collapse
|
2
|
Hughes MA, Li H, Theodoropoulou N, Carey JD. Optically modulated magnetic resonance of erbium implanted silicon. Sci Rep 2019; 9:19031. [PMID: 31836733 PMCID: PMC6910921 DOI: 10.1038/s41598-019-55246-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Er implanted Si is a candidate for quantum and photonic applications; however, several different Er centres are generated, and their symmetry, energy level structure, magnetic and optical properties, and mutual interactions have been poorly understood, which has been a major barrier to the development of these applications. Optically modulated magnetic resonance (OMMR) gives a spectrum of the modulation of an electron paramagnetic resonance (EPR) signal by a tuneable optical field. Our OMMR spectrum of Er implanted Si agrees with three independent measurements, showing that we have made the first measurement of the crystal field splitting of the 4I13/2 manifold of Er implanted Si, and allows us to revise the crystal field splitting of the 4I15/2 manifold. This splitting originates from a photoluminescence (PL) active O coordinated Er centre with orthorhombic C2v symmetry, which neighbours an EPR active O coordinated Er centre with monoclinic C1h symmetry. This pair of centres could form the basis of a controlled NOT (CNOT) gate.
Collapse
Affiliation(s)
- Mark A Hughes
- Joule Physics Laboratory, School of Computing Science and Engineering, University of Salford, Salford, M5 4WT, UK.
| | - Heqing Li
- Joule Physics Laboratory, School of Computing Science and Engineering, University of Salford, Salford, M5 4WT, UK
| | - Nafsika Theodoropoulou
- Joule Physics Laboratory, School of Computing Science and Engineering, University of Salford, Salford, M5 4WT, UK
| | - J David Carey
- Advanced Technology Institute, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK.,Department of Electrical and Electronic Engineering, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
3
|
Abstract
AbstractIt is one of the curious twists of technology that transitions which are parity forbidden in the free ions of rare earths should have become of immense importance in solids used in fluorescent lighting, cathode ray tubes and optical amplifiers. It is not an unreasonable expectation that having achieved such success with excitation from photons and accelerated electrons that junction electroluminescence should also be important. Since Ennen demonstrated good low temperature electroluminescence in silicon in the early 80's, a formidable amount of work has been done to try to understand the excitation and quenching mechanisms in common semiconductor hosts such as silicon and gallium arsenide. Although some remarkable experimental results have been obtained for erbium in nanostructures, insulators and wide bandgap materials the performance in bulk silicon and silicon germanium is disappointing. More importantly we still have not achieved a comprehensive, detailed understanding of the processes of non-radiative competition to the rare earth emission. In this paper the key steps that have been made over the last twenty years towards our present day knowledge of erbium luminescence in semiconducting hosts are reviewed and an assessment made of what remains to be done.
Collapse
|
4
|
Carey JD. State mixing and the cubic crystal field approximation for rare earth ions: the case of the Er(3+) ion in axial crystal fields. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:175601. [PMID: 21825428 DOI: 10.1088/0953-8984/21/17/175601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The validity of the cubic crystal field (CCF) approximation for the interpretation of the magnetic resonance properties of the Er(3+) ion in crystal fields with tetragonal and trigonal symmetry is examined. The ground state paramagnetic resonance principal g values are explicitly calculated in terms of the cubic crystal field eigenstates as a function of axial crystal field strength. It is shown that, depending on the ground state crystal field eigenstate, the widely accepted CCF approximation of simply taking the average of the trace of the g tensor and equating it to the g value found in cubic symmetry can lead to a misinterpretation of the ground state Stark level and the lattice coordination of the ion. The implications for experimentally reported results are discussed.
Collapse
Affiliation(s)
- J David Carey
- Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
5
|
Izeddin I, Klik MAJ, Vinh NQ, Bresler MS, Gregorkiewicz T. Donor-state-enabling Er-related luminescence in silicon: direct identification and resonant excitation. PHYSICAL REVIEW LETTERS 2007; 99:077401. [PMID: 17930923 DOI: 10.1103/physrevlett.99.077401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Indexed: 05/25/2023]
Abstract
We conclusively establish a direct link between formation of an Er-related donor gap state and the 1.5 microm emission of Er in Si. The experiment is performed on Si/Si:Er nanolayers where a single type of Er optical center dominates. We show that the Er emission can be resonantly induced by direct pumping into the bound exciton state of the identified donor. Using two-color spectroscopy with a free-electron laser we determine the ionization energy of the donor-state-enabling Er excitation as E(D) approximately 218 meV. We demonstrate quenching of the Er-related emission upon ionization of the donor.
Collapse
Affiliation(s)
- I Izeddin
- Van der Waals-Zeeman Institute, University of Amsterdam Valckenierstraat 65, NL-1018XE Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|