1
|
Ricci A, Poccia N, Campi G, Mishra S, Müller L, Joseph B, Shi B, Zozulya A, Buchholz M, Trabant C, Lee JCT, Viefhaus J, Goedkoop JB, Nugroho AA, Braden M, Roy S, Sprung M, Schüßler-Langeheine C. Measurement of Spin Dynamics in a Layered Nickelate Using X-Ray Photon Correlation Spectroscopy: Evidence for Intrinsic Destabilization of Incommensurate Stripes at Low Temperatures. PHYSICAL REVIEW LETTERS 2021; 127:057001. [PMID: 34397237 DOI: 10.1103/physrevlett.127.057001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We study the temporal stability of stripe-type spin order in a layered nickelate with x-ray photon correlation spectroscopy and observe fluctuations on timescales of tens of minutes over a wide temperature range. These fluctuations show an anomalous temperature dependence: they slow down at intermediate temperatures and speed up on both heating and cooling. This behavior appears to be directly connected with spatial correlations: stripes fluctuate slowly when stripe correlation lengths are large and become faster when spatial correlations decrease. A low-temperature decay of nickelate stripe correlations, reminiscent of what occurs in cuprates as a result of a competition between stripes and superconductivity, hence occurs via loss of both spatial and temporal correlations.
Collapse
Affiliation(s)
- Alessandro Ricci
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Nicola Poccia
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research IFW Dresden, 01069 Dresden, Germany
| | - Gaetano Campi
- Institute of Crystallography, CNR, Via Salaria km. 29,3 - 00015 Monterotondo, Roma, Italy
| | - Shrawan Mishra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Leonard Müller
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Boby Joseph
- Elettra Sincrotrone Trieste, Strada Statale 14 - km 163,5, AREA Science Park, I-34149 Basovizza, Trieste, Italy
| | - Bo Shi
- Van der Waals-Zeeman Institute, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Alexey Zozulya
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marcel Buchholz
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Christoph Trabant
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - James C T Lee
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics and Astronomy, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, California 94928-3609, USA
- Department of Physics, Concordia College, 901 8th Street South, Moorhead, Minnesota 56562 USA
| | - Jens Viefhaus
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Jeroen B Goedkoop
- Van der Waals-Zeeman Institute, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Agustinus Agung Nugroho
- Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, 40132, Indonesia
| | - Markus Braden
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Sujoy Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | | |
Collapse
|
2
|
Shen Y, Fabbris G, Miao H, Cao Y, Meyers D, Mazzone DG, Assefa TA, Chen XM, Kisslinger K, Prabhakaran D, Boothroyd AT, Tranquada JM, Hu W, Barbour AM, Wilkins SB, Mazzoli C, Robinson IK, Dean MPM. Charge Condensation and Lattice Coupling Drives Stripe Formation in Nickelates. PHYSICAL REVIEW LETTERS 2021; 126:177601. [PMID: 33988428 DOI: 10.1103/physrevlett.126.177601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La_{2-x}Sr_{x}NiO_{4+δ}, in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant x-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La_{2-x}Sr_{x}NiO_{4+δ}. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates.
Collapse
Affiliation(s)
- Y Shen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - G Fabbris
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - H Miao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Y Cao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - D Meyers
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - D G Mazzone
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - T A Assefa
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X M Chen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - K Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Prabhakaran
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, United Kingdom
| | - A T Boothroyd
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, United Kingdom
| | - J M Tranquada
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - W Hu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A M Barbour
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - S B Wilkins
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Mazzoli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - I K Robinson
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
3
|
Zhong R, Winn BL, Gu G, Reznik D, Tranquada JM. Evidence for a Nematic Phase in La_{1.75}Sr_{0.25}NiO_{4}. PHYSICAL REVIEW LETTERS 2017; 118:177601. [PMID: 28498689 DOI: 10.1103/physrevlett.118.177601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/07/2023]
Abstract
Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La_{2-x}Sr_{x}NiO_{4}, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature "disordered" state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, we use neutron scattering measurements on an x=0.25 crystal to demonstrate that the dispersion of the charge-stripe excitations is anisotropic. This observation provides compelling evidence for the presence of electronic nematic order.
Collapse
Affiliation(s)
- Ruidan Zhong
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Materials Science and Engineering Department, Stony Brook University, Stony Brook, New York 11794, USA
| | - Barry L Winn
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Genda Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Dmitry Reznik
- Department of Physics, University of Colorado, Boulder, Colorado 80304, USA
| | - J M Tranquada
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
4
|
Direct observation of dynamic charge stripes in La2-xSrxNiO4. Nat Commun 2014; 5:3467. [PMID: 24632780 DOI: 10.1038/ncomms4467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/18/2014] [Indexed: 11/08/2022] Open
Abstract
The insulator-to-metal transition continues to be a challenging subject, especially when electronic correlations are strong. In layered compounds, such as La2-xSrxNiO4 and La2-xBaxCuO4, the doped charge carriers can segregate into periodically spaced charge stripes separating narrow domains of antiferromagnetic order. Although there have been theoretical proposals of dynamically fluctuating stripes, direct spectroscopic evidence of charge-stripe fluctuations has been lacking. Here we report the detection of critical lattice fluctuations, driven by charge-stripe correlations, in La2-xSrxNiO4 using inelastic neutron scattering. This scattering is detected at large momentum transfers where the magnetic form factor suppresses the spin fluctuation signal. The lattice fluctuations associated with the dynamic charge stripes are narrow in q and broad in energy. They are strongest near the charge-stripe melting temperature. Our results open the way towards the quantitative theory of dynamic stripes and for directly detecting dynamical charge stripes in other strongly correlated systems, including high-temperature superconductors such as La2-xSrxCuO4.
Collapse
|
5
|
Schilling A, Dell'amore R, Karpinski J, Bukowski Z, Medarde M, Pomjakushina E, Müller KA. LaBaNiO(4): a Fermi glass. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:015701. [PMID: 21817228 DOI: 10.1088/0953-8984/21/1/015701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polycrystalline samples of LaSr(1-x)Ba(x)NiO(4) show a crossover from a state with metallic transport properties for x = 0 to an insulating state as [Formula: see text]. The end member LaBaNiO(4) with a nominal nickel Ni 3d(7) configuration might therefore be regarded as a candidate for an antiferromagnetic insulator. However, we do not observe any magnetic ordering in LaBaNiO(4) down to 1.5 K, and despite its insulating transport properties several other physical properties of LaBaNiO(4) resemble those of metallic LaSrNiO(4). Based on an analysis of electrical and thermal-conductivity data as well as magnetic-susceptibility and low-temperature specific-heat measurements, we suggest that LaBaNiO(4) is a Fermi glass with a finite electron density of states at the Fermi level but these states are localized.
Collapse
Affiliation(s)
- A Schilling
- Physics Institute of the Universität of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|