de Visser RL, Blaauboer M. Deterministic teleportation of electrons in a quantum dot nanostructure.
PHYSICAL REVIEW LETTERS 2006;
96:246801. [PMID:
16907265 DOI:
10.1103/physrevlett.96.246801]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Indexed: 05/11/2023]
Abstract
We present a proposal for deterministic quantum teleportation of electrons in a semiconductor nanostructure consisting of a single and a double quantum dot. The central issue addressed in this Letter is how to design and implement the most efficient--in terms of the required number of single and two-qubit operations--deterministic teleportation protocol for this system. Using a group-theoretical analysis, we show that deterministic teleportation requires a minimum of three single-qubit rotations and two entangling (square root SWAP) operations. These can be implemented for spin qubits in quantum dots using electron-spin resonance (for single-spin rotations) and exchange interaction (for square root SWAP operations).
Collapse