1
|
Makos I, Orfanos I, Nayak A, Peschel J, Major B, Liontos I, Skantzakis E, Papadakis N, Kalpouzos C, Dumergue M, Kühn S, Varju K, Johnsson P, L'Huillier A, Tzallas P, Charalambidis D. Α 10-gigawatt attosecond source for non-linear XUV optics and XUV-pump-XUV-probe studies. Sci Rep 2020; 10:3759. [PMID: 32111920 PMCID: PMC7048767 DOI: 10.1038/s41598-020-60331-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/29/2020] [Indexed: 11/09/2022] Open
Abstract
The quantum mechanical motion of electrons and nuclei in systems spatially confined to the molecular dimensions occurs on the sub-femtosecond to the femtosecond timescales respectively. Consequently, the study of ultrafast electronic and, in specific cases, nuclear dynamics requires the availability of light pulses with attosecond (asec) duration and of sufficient intensity to induce two-photon processes, essential for probing the intrinsic system dynamics. The majority of atoms, molecules and solids absorb in the extreme-ultraviolet (XUV) spectral region, in which the synthesis of the required attosecond pulses is feasible. Therefore, the XUV spectral region optimally serves the study of such ultrafast phenomena. Here, we present a detailed review of the first 10-GW class XUV attosecond source based on laser driven high harmonic generation in rare gases. The pulse energy of this source largely exceeds other laser driven attosecond sources and is comparable to the pulse energy of femtosecond Free-Electron-Laser (FEL) XUV sources. The measured pulse duration in the attosecond pulse train is 650 ± 80 asec. The uniqueness of the combined high intensity and short pulse duration of the source is evidenced in non-linear XUV-optics experiments. It further advances the implementation of XUV-pump-XUV-probe experiments and enables the investigation of strong field effects in the XUV spectral region.
Collapse
Affiliation(s)
- I Makos
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, GR71110, Heraklion, Crete, Greece.,Department of Physics, University of Crete, GR71003, Heraklion, Crete, Greece
| | - I Orfanos
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, GR71110, Heraklion, Crete, Greece.,Department of Physics, University of Crete, GR71003, Heraklion, Crete, Greece
| | - A Nayak
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, GR71110, Heraklion, Crete, Greece.,ELI-ALPS, ELI-Hu Non-Profit Ltd., Dugonics tér 13, H-6720, Szeged, Hungary.,Institute of Physics, University of Szeged, Dom tér 9, 6720, Szeged, Hungary
| | - J Peschel
- Department of Physics, Lund University, SE-221 00, Lund, Sweden
| | - B Major
- ELI-ALPS, ELI-Hu Non-Profit Ltd., Dugonics tér 13, H-6720, Szeged, Hungary
| | - I Liontos
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, GR71110, Heraklion, Crete, Greece
| | - E Skantzakis
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, GR71110, Heraklion, Crete, Greece
| | - N Papadakis
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, GR71110, Heraklion, Crete, Greece
| | - C Kalpouzos
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, GR71110, Heraklion, Crete, Greece
| | - M Dumergue
- ELI-ALPS, ELI-Hu Non-Profit Ltd., Dugonics tér 13, H-6720, Szeged, Hungary
| | - S Kühn
- ELI-ALPS, ELI-Hu Non-Profit Ltd., Dugonics tér 13, H-6720, Szeged, Hungary
| | - K Varju
- ELI-ALPS, ELI-Hu Non-Profit Ltd., Dugonics tér 13, H-6720, Szeged, Hungary.,Department of Optics and Quantum Electronics, University of Szeged, Dom tér 9, 6720, Szeged, Hungary
| | - P Johnsson
- Department of Physics, Lund University, SE-221 00, Lund, Sweden
| | - A L'Huillier
- Department of Physics, Lund University, SE-221 00, Lund, Sweden
| | - P Tzallas
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, GR71110, Heraklion, Crete, Greece.,ELI-ALPS, ELI-Hu Non-Profit Ltd., Dugonics tér 13, H-6720, Szeged, Hungary
| | - D Charalambidis
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, GR71110, Heraklion, Crete, Greece. .,Department of Physics, University of Crete, GR71003, Heraklion, Crete, Greece. .,ELI-ALPS, ELI-Hu Non-Profit Ltd., Dugonics tér 13, H-6720, Szeged, Hungary.
| |
Collapse
|
6
|
Nabekawa Y, Shimizu T, Okino T, Furusawa K, Hasegawa H, Yamanouchi K, Midorikawa K. Interferometric autocorrelation of an attosecond pulse train in the single-cycle regime. PHYSICAL REVIEW LETTERS 2006; 97:153904. [PMID: 17155329 DOI: 10.1103/physrevlett.97.153904] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Indexed: 05/12/2023]
Abstract
We report on the direct observation of the phase locking of the attosecond pulse train (APT) via interferometric autocorrelation in the extreme ultraviolet region. APT is formed with Fourier synthesis of high-order harmonic fields of a femtosecond laser pulse. Time-of-flight mass spectra of N+, resulting from the Coulomb explosion of N2 absorbing two photons of APT, efficiently yield correlated signals of APT. The measured autocorrelation trace exhibits that the duration of the pulse should be only 1.3 periods of the extreme ultraviolet carrier frequency. A few interference fringes within the short pulse duration clearly show two types of symmetry, which ensure the phase locking between pulses in APT.
Collapse
Affiliation(s)
- Yasuo Nabekawa
- Laser Technology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Gordon A, Kärtner FX, Rohringer N, Santra R. Role of many-electron dynamics in high harmonic generation. PHYSICAL REVIEW LETTERS 2006; 96:223902. [PMID: 16803307 DOI: 10.1103/physrevlett.96.223902] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 05/03/2006] [Indexed: 05/10/2023]
Abstract
High harmonic generation (HHG) in many-electron atoms is studied theoretically. The breakdown of the frozen-core single active electron approximation is demonstrated, as it predicts roughly the same radiation amplitude in all noble gases. This is in contradiction with experiments, where heavier noble gases are known to emit much stronger HHG radiation than lighter ones. This experimental behavior of the noble gases can be qualitatively reproduced when many-electron dynamics, within a simple approximation, is taken into account.
Collapse
Affiliation(s)
- Ariel Gordon
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|
8
|
Papalazarou E, Kovacev M, Tzallas P, Benis EP, Kalpouzos C, Tsakiris GD, Charalambidis D. Spectral phase distribution retrieval through coherent control of harmonic generation. PHYSICAL REVIEW LETTERS 2006; 96:163901. [PMID: 16712230 DOI: 10.1103/physrevlett.96.163901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 03/13/2006] [Indexed: 05/09/2023]
Abstract
The temporal intensity distribution of the third harmonic of a Ti:sapphire laser generated in Xe gas is fully reconstructed from its spectral phase and amplitude distributions. The spectral phases are retrieved by cross correlating the fundamental laser frequency field with that of the third harmonic, in a three laser versus one harmonic photon coupling scheme. The third harmonic spectral amplitude distribution is extracted from its field autocorrelation. The measured pulse duration is found to be in agreement with that expected from lowest order perturbation theory both for unstretched and chirped pulses.
Collapse
Affiliation(s)
- E Papalazarou
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure & Laser, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|