Nigro A, Guarino A, Leo A, Grimaldi G, Avitabile F, Romano P. Point-Contact Spectroscopy in Bulk Samples of Electron-Doped Cuprate Superconductors.
MATERIALS (BASEL, SWITZERLAND) 2023;
16:7644. [PMID:
38138787 PMCID:
PMC10744691 DOI:
10.3390/ma16247644]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Point-contact spectroscopy was performed on bulk samples of electron-doped high temperature superconductor Nd2-xCexCuO4-δ. The samples were characterized using X-ray diffraction and scanning electron microscopy equipped with a wavelength-dispersive spectrometer and an electron backscatter diffraction detector. Samples with Ce content x = 0.15 showed the absence of spurious phases and randomly oriented grains, most of which had dimensions of approximately 220 µm2. The low-bias spectra in the tunneling regime, i.e., high-transparency interface, exhibited a gap feature at about ±5 meV and no zero-bias conductance, despite the random oriented grains investigated within our bulk samples, consistent with most of the literature data on oriented samples. High-bias conductance was also measured in order to obtain information on the properties of the barrier. A V-shape was observed in some cases, instead of the parabolic behavior expected for tunnel junctions.
Collapse