1
|
Abstract
Electric noise spectroscopy is a non-destructive and a very sensitive method for studying the dynamic behaviors of the charge carriers and the kinetic processes in several condensed matter systems, with no limitation on operating temperatures. This technique has been extensively used to investigate several perovskite compounds, manganese oxides (La1−xSrxMnO3, La0.7Ba0.3MnO3, and Pr0.7Ca0.3MnO3), and a double perovskite (Sr2FeMoO6), whose properties have recently attracted great attention. In this work are reported the results from a detailed electrical transport and noise characterizations for each of the above cited materials, and they are interpreted in terms of specific physical models, evidencing peculiar properties, such as quantum interference effects and charge density waves.
Collapse
|
2
|
Moritz C, Sega M, Innerbichler M, Geissler PL, Dellago C. Weak scaling of the contact distance between two fluctuating interfaces with system size. Phys Rev E 2020; 102:062801. [PMID: 33465946 DOI: 10.1103/physreve.102.062801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
A pair of flat parallel surfaces, each freely diffusing along the direction of their separation, will eventually come into contact. If the shapes of these surfaces also fluctuate, then contact will occur when their centers-of-mass remain separated by a nonzero distance ℓ. An example of such a situation is the motion of interfaces between two phases at conditions of thermodynamic coexistence, and in particular the annihilation of domain wall pairs under periodic boundary conditions. Here we present a general approach to calculate the probability distribution of the contact distance ℓ and determine how its most likely value ℓ^{*} depends on the surfaces' lateral size L. Using the Edward-Wilkinson equation as a model for interfaces, we demonstrate that ℓ^{*} scales weakly with system size, i.e., the dependence of ℓ^{*} on L for both (1+1)- and (2+1)-dimensional interfaces is such that lim_{L→∞}(ℓ^{*}/L)=0. In particular, for (2+1)-dimensional interfaces ℓ^{*} is an algebraic function of logL, a result that is confirmed by computer simulations of slab-shaped domains formed under periodic boundary conditions. This weak scaling implies that such domains remain topologically intact until ℓ becomes very small compared to the lateral size of the interface, contradicting expectations from equilibrium thermodynamics.
Collapse
Affiliation(s)
- Clemens Moritz
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Marcello Sega
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, 90429 Nürnberg, Germany
| | - Max Innerbichler
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Phillip L Geissler
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Christoph Dellago
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Erwin Schrödinger Institute for Mathematics and Physics, Boltzmanngasse 9, 1090, Vienna, Austria
| |
Collapse
|
3
|
Almeida RAL, Ferreira SO, Ferraz I, Oliveira TJ. Initial pseudo-steady state & asymptotic KPZ universality in semiconductor on polymer deposition. Sci Rep 2017. [PMID: 28630488 PMCID: PMC5476714 DOI: 10.1038/s41598-017-03843-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Kardar-Parisi-Zhang (KPZ) class is a paradigmatic example of universality in nonequilibrium phenomena, but clear experimental evidences of asymptotic 2D-KPZ statistics are still very rare, and far less understanding stems from its short-time behavior. We tackle such issues by analyzing surface fluctuations of CdTe films deposited on polymeric substrates, based on a huge spatio-temporal surface sampling acquired through atomic force microscopy. A pseudo-steady state (where average surface roughness and spatial correlations stay constant in time) is observed at initial times, persisting up to deposition of ~104 monolayers. This state results from a fine balance between roughening and smoothening, as supported by a phenomenological growth model. KPZ statistics arises at long times, thoroughly verified by universal exponents, spatial covariance and several distributions. Recent theoretical generalizations of the Family-Vicsek scaling and the emergence of log-normal distributions during interface growth are experimentally confirmed. These results confirm that high vacuum vapor deposition of CdTe constitutes a genuine 2D-KPZ system, and expand our knowledge about possible substrate-induced short-time behaviors.
Collapse
Affiliation(s)
- Renan A L Almeida
- Tokyo Institute of Technology, Department of Physics, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - Sukarno O Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Isnard Ferraz
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Carrasco ISS, Oliveira TJ. Width and extremal height distributions of fluctuating interfaces with window boundary conditions. Phys Rev E 2016; 93:012801. [PMID: 26871135 DOI: 10.1103/physreve.93.012801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Indexed: 11/07/2022]
Abstract
We present a detailed study of squared local roughness (SLRDs) and local extremal height distributions (LEHDs), calculated in windows of lateral size l, for interfaces in several universality classes, in substrate dimensions d_{s}=1 and 2. We show that their cumulants follow a Family-Vicsek-type scaling, and, at early times, when ξ≪l (ξ is the correlation length), the rescaled SLRDs are given by log-normal distributions, with their nth cumulant scaling as (ξ/l)^{(n-1)d_{s}}. This gives rise to an interesting temporal scaling for such cumulants as 〈w_{n}〉_{c}∼t^{γ_{n}}, with γ_{n}=2nβ+(n-1)d_{s}/z=[2n+(n-1)d_{s}/α]β. This scaling is analytically proved for the Edwards-Wilkinson (EW) and random deposition interfaces and numerically confirmed for other classes. In general, it is featured by small corrections, and, thus, it yields exponents γ_{n} (and, consequently, α,β and z) in good agreement with their respective universality class. Thus, it is a useful framework for numerical and experimental investigations, where it is usually hard to estimate the dynamic z and mainly the (global) roughness α exponents. The stationary (for ξ≫l) SLRDs and LEHDs of the Kardar-Parisi-Zhang (KPZ) class are also investigated, and, for some models, strong finite-size corrections are found. However, we demonstrate that good evidence of their universality can be obtained through successive extrapolations of their cumulant ratios for long times and large l. We also show that SLRDs and LEHDs are the same for flat and curved KPZ interfaces.
Collapse
Affiliation(s)
- I S S Carrasco
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
5
|
Oliveira TJ, Alves SG, Ferreira SC. Kardar-Parisi-Zhang universality class in (2+1) dimensions: universal geometry-dependent distributions and finite-time corrections. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:040102. [PMID: 23679356 DOI: 10.1103/physreve.87.040102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 06/02/2023]
Abstract
The dynamical regimes of models belonging to the Kardar-Parisi-Zhang (KPZ) universality class are investigated in d=2+1 by extensive simulations considering flat and curved geometries. Geometry-dependent universal distributions, different from their Tracy-Widom counterpart in one dimension, were found. Distributions exhibit finite-time corrections hallmarked by a shift in the mean decaying as t(-β), where β is the growth exponent. Our results support a generalization of the ansatz h=v(∞)t+(Γt)(β)χ+η+ζt(-β) to higher dimensions, where v(∞), Γ, ζ, and η are nonuniversal quantities whereas β and χ are universal and the last one depends on the surface geometry. Generalized Gumbel distributions provide very good fits of the distributions in at least four orders of magnitude around the peak, which can be used for comparisons with experiments. Our numerical results call for analytical approaches and experimental realizations of the KPZ class in two-dimensional systems.
Collapse
Affiliation(s)
- T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
6
|
Moloney NR, Ozogány K, Rácz Z. Order statistics of 1/fα signals. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:061101. [PMID: 22304034 DOI: 10.1103/physreve.84.061101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Indexed: 05/31/2023]
Abstract
Order statistics of periodic, Gaussian noise with 1/f(α) power spectrum is investigated. Using simulations and phenomenological arguments, we find three scaling regimes for the average gap d(k) = (x(k) -x(k) + 1) between the kth and (k+1)st largest values of the signal. The result d(k) k(-1), known for independent, identically distributed variables, remains valid for 0 ≤ α < 1. Nontrivial, α-dependent scaling exponents, d(k) k((α-3)/2), emerge for 1 < α < 5, and, finally, α-independent scaling, d(k) ~ k, is obtained for α > 5. The spectra of average ordered values ε(k) =(x(1) - x(k))~ k(β) is also examined. The exponent β is derived from the gap scaling as well as by relating ε(k) to the density of near-extreme states. Known results for the density of near-extreme states combined with scaling suggest that β(α = 2) = 1/2, β(4) = 3/2, and β(∞) = 2 are exact values. We also show that parallels can be drawn between ε(k) and the quantum mechanical spectra of a particle in power-law potentials.
Collapse
Affiliation(s)
- N R Moloney
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str 38, D-01187 Dresden, Germany.
| | | | | |
Collapse
|
7
|
Sakagawa H. Confinement of the Two Dimensional Discrete Gaussian Free Field Between Two Hard Walls. ELECTRON J PROBAB 2009. [DOI: 10.1214/ejp.v14-711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Sire C. Crossing intervals of non-Markovian Gaussian processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:011121. [PMID: 18763933 DOI: 10.1103/physreve.78.011121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Indexed: 05/26/2023]
Abstract
We review the properties of time intervals between the crossings at a level M of a smooth stationary Gaussian temporal signal. The distribution of these intervals and the persistence are derived within the independent interval approximation (IIA). These results grant access to the distribution of extrema of a general Gaussian process. Exact results are obtained for the persistence exponents and the crossing interval distributions, in the limit of large |M|. In addition, the small-time behavior of the interval distributions and the persistence is calculated analytically, for any M. The IIA is found to reproduce most of these exact results, and its accuracy is also illustrated by extensive numerical simulations applied to non-Markovian Gaussian processes appearing in various physical contexts.
Collapse
Affiliation(s)
- Clément Sire
- Laboratoire de Physique Théorique--IRSAMC, CNRS, Université Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
9
|
Oliveira TJ, Aarão Reis FDA. Maximal- and minimal-height distributions of fluctuating interfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:041605. [PMID: 18517633 DOI: 10.1103/physreve.77.041605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Indexed: 05/26/2023]
Abstract
Maximal- and minimal-height distributions (MAHD, MIHD) of two-dimensional interfaces grown with the nonlinear equations of Kardar-Parisi-Zhang (KPZ, second order) and of Villain-Lai-Das Sarma (VLDS, fourth order) are shown to be different. Two universal curves may be MAHD or MIHD of each class depending on the sign of the relevant nonlinear term, which is confirmed by results of several lattice models in the KPZ and VLDS classes. The difference between MAHD and MIDH is connected with the asymmetry of the local height distribution. A simple, exactly solvable deposition-erosion model is introduced to illustrate this feature. The average extremal heights scale with the same exponent of the average roughness. In contrast to other correlated systems, generalized Gumbel distributions do not fit those MAHD and MIHD, nor those of Edwards-Wilkinson growth.
Collapse
Affiliation(s)
- T J Oliveira
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói RJ, Brazil
| | | |
Collapse
|
10
|
Györgyi G, Moloney NR, Ozogány K, Rácz Z. Maximal height statistics for 1/f(alpha) signals. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:021123. [PMID: 17358329 DOI: 10.1103/physreve.75.021123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Indexed: 05/14/2023]
Abstract
Numerical and analytical results are presented for the maximal relative height distribution of stationary periodic Gaussian signals (one-dimensional interfaces) displaying a 1/f(alpha) power spectrum. For 0<or=alpha<1 (regime of decaying correlations), we observe that the mathematically established limiting distribution (Fisher-Tippett-Gumbel distribution) is approached extremely slowly as the sample size increases. The convergence is rapid for alpha>1 (regime of strong correlations) and a highly accurate picture gallery of distribution functions can be constructed numerically. Analytical results can be obtained in the limit alpha-->infinity and, for large alpha, by perturbation expansion. Furthermore, using path integral techniques we derive a trace formula for the distribution function, valid for alpha=2n even integer. From the latter we extract the small argument asymptote of the distribution function whose analytic continuation to arbitrary alpha>1 is found to be in agreement with simulations. Comparison of the extreme and roughness statistics of the interfaces reveals similarities in both the small and large argument asymptotes of the distribution functions.
Collapse
Affiliation(s)
- G Györgyi
- Institute for Theoretical Physics - HAS Research Groups, Eötvös University, Pázmány sétány 1/a, 1117 Budapest, Hungary.
| | | | | | | |
Collapse
|
11
|
Schehr G, Majumdar SN. Universal asymptotic statistics of maximal relative height in one-dimensional solid-on-solid models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:056103. [PMID: 16802994 DOI: 10.1103/physreve.73.056103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Indexed: 05/10/2023]
Abstract
We study the probability density function P(h(m), L) of the maximum relative height h(m) in a wide class of one-dimensional solid-on-solid models of finite size L. For all these lattice models, in the large-L limit, a central limit argument shows that, for periodic boundary conditions, P(h(m), L) takes a universal scaling form P(h(m), L) approximately radical(12w(L))(-1) f(h(m)radical(12w(L))(-1), with w(L) the width of the fluctuating interface f(x) and the Airy distribution function. For one instance of these models, corresponding to the extremely anisotropic Ising model in two dimensions, this result is obtained by an exact computation using the transfer matrix technique, valid for any L > 0. These arguments and exact analytical calculations are supported by numerical simulations, which show in addition that the subleading scaling function is also universal, up to a nonuniversal amplitude, and simply given by the derivative of the Airy distribution function f'(x).
Collapse
Affiliation(s)
- Grégory Schehr
- Theoretische Physik, Universität des Saarlandes, Saarbrücken, Germany
| | | |
Collapse
|