1
|
Faizi HA, Granek R, Vlahovska PM. Curvature fluctuations of fluid vesicles reveal hydrodynamic dissipation within the bilayer. Proc Natl Acad Sci U S A 2024; 121:e2413557121. [PMID: 39441635 PMCID: PMC11536141 DOI: 10.1073/pnas.2413557121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
The biological function of membranes is closely related to their softness, which is often studied through the membranes' thermally driven fluctuations. Typically, the analysis assumes that the relaxation rate of a pure bending deformation is determined by the competition between membrane bending rigidity and viscous dissipation in the surrounding medium. Here, we reexamine this assumption and demonstrate that viscous flows within the membrane dominate the dynamics of bending fluctuations of nonplanar membranes with a radius of curvature smaller than the Saffman-Delbrück length. Using flickering spectroscopy of giant vesicles made of dipalmitoylphosphatidylcholine, DPPC:cholesterol mixtures and pure diblock-copolymer membranes, we experimentally detect the signature of membrane dissipation in curvature fluctuations. We show that membrane viscosity can be reliably obtained from the short time behavior of the shape time correlations. The results indicate that the DPPC:cholesterol membranes behave as a Newtonian fluid, while the polymer membranes exhibit more complex rheology. Our study provides physical insights into the time scales of curvature remodeling of biological and synthetic membranes.
Collapse
Affiliation(s)
- Hammad A. Faizi
- Department of Mechanical Engineering, Northwestern University, Evanston, IL60208
| | - Rony Granek
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of The Negev, Beer Sheva84105, Israel
| | - Petia M. Vlahovska
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL60208
- National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago, Chicago, IL60611
| |
Collapse
|
2
|
Gommes CJ, Dubey PS, Stadler AM, Wu B, Czakkel O, Porcar L, Jaksch S, Frielinghaus H, Holderer O. Gaussian model of fluctuating membrane and its scattering properties. Phys Rev E 2024; 110:034608. [PMID: 39425401 DOI: 10.1103/physreve.110.034608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/13/2024] [Indexed: 10/21/2024]
Abstract
A mathematical model is developed to jointly analyze elastic and inelastic scattering data of fluctuating membranes within a single theoretical framework. The model builds on a nonhomogeneously clipped time-dependent Gaussian random field. This specific approach provides one with general analytical expressions for the intermediate scattering function for any number of sublayers in the membrane and arbitrary contrasts. The model is illustrated with the analysis of small-angle x-ray and neutron scattering as well as with neutron spin-echo data measured on unilamellar vesicles prepared from phospholipids extracted from porcine brain tissues. The parameters fitted on the entire data set are the lengths of the chain and the head of the molecules that make up the membrane, the amplitude and lateral sizes of the bending deformations, the thickness fluctuation, and a single parameter characterizing the dynamics.
Collapse
|
3
|
Abdelrahman A, Smith AS, Sengupta K. Observing Membrane and Cell Adhesion via Reflection Interference Contrast Microscopy. Methods Mol Biol 2023; 2654:123-135. [PMID: 37106179 DOI: 10.1007/978-1-0716-3135-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Reflection interference contrast microscopy (RICM) is an optical microscopy technique ideally suited for imaging adhesion. While RICM (and the closely related interference reflection microscopy (IRM)) has been extensively used qualitatively or semiquantitatively to image cells, including immune cells, it can also be used quantitatively to measure membrane to surface distance, especially for model membranes. Here, we present a protocol for RICM and IRM imaging and the details of semiquantitative and quantitative analysis.
Collapse
Affiliation(s)
- Ahmed Abdelrahman
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | - Ana-Sunčana Smith
- PULS Group, Department of Physics, Centre for Computational Materials and Processes, Friedrich Alexander University Erlangen-Nürnberg, IZNF, Erlangen, Germany.
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Kheya Sengupta
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
4
|
Mijanović L, Weber I. Adhesion of Dictyostelium Amoebae to Surfaces: A Brief History of Attachments. Front Cell Dev Biol 2022; 10:910736. [PMID: 35721508 PMCID: PMC9197732 DOI: 10.3389/fcell.2022.910736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dictyostelium amoebae adhere to extracellular material using similar mechanisms to metazoan cells. Notably, the cellular anchorage loci in Amoebozoa and Metazoa are both arranged in the form of discrete spots and incorporate a similar repertoire of intracellular proteins assembled into multicomponent complexes located on the inner side of the plasma membrane. Surprisingly, however, Dictyostelium lacks integrins, the canonical transmembrane heterodimeric receptors that dominantly mediate adhesion of cells to the extracellular matrix in multicellular animals. In this review article, we summarize the current knowledge about the cell-substratum adhesion in Dictyostelium, present an inventory of the involved proteins, and draw parallels with the situation in animal cells. The emerging picture indicates that, while retaining the basic molecular architecture common to their animal relatives, the adhesion complexes in free-living amoeboid cells have evolved to enable less specific interactions with diverse materials encountered in their natural habitat in the deciduous forest soil. Dissection of molecular mechanisms that underlay short lifetime of the cell-substratum attachments and high turnover rate of the adhesion complexes in Dictyostelium should provide insight into a similarly modified adhesion phenotype that accompanies the mesenchymal-amoeboid transition in tumor metastasis.
Collapse
Affiliation(s)
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
5
|
Puech PH, Bongrand P. Mechanotransduction as a major driver of cell behaviour: mechanisms, and relevance to cell organization and future research. Open Biol 2021; 11:210256. [PMID: 34753321 PMCID: PMC8586914 DOI: 10.1098/rsob.210256] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
How do cells process environmental cues to make decisions? This simple question is still generating much experimental and theoretical work, at the border of physics, chemistry and biology, with strong implications in medicine. The purpose of mechanobiology is to understand how biochemical and physical cues are turned into signals through mechanotransduction. Here, we review recent evidence showing that (i) mechanotransduction plays a major role in triggering signalling cascades following cell-neighbourhood interaction; (ii) the cell capacity to continually generate forces, and biomolecule properties to undergo conformational changes in response to piconewton forces, provide a molecular basis for understanding mechanotransduction; and (iii) mechanotransduction shapes the guidance cues retrieved by living cells and the information flow they generate. This includes the temporal and spatial properties of intracellular signalling cascades. In conclusion, it is suggested that the described concepts may provide guidelines to define experimentally accessible parameters to describe cell structure and dynamics, as a prerequisite to take advantage of recent progress in high-throughput data gathering, computer simulation and artificial intelligence, in order to build a workable, hopefully predictive, account of cell signalling networks.
Collapse
Affiliation(s)
- Pierre-Henri Puech
- Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, CNRS UMR 7333, Aix-Marseille Université UM61, Marseille, France
| | - Pierre Bongrand
- Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, CNRS UMR 7333, Aix-Marseille Université UM61, Marseille, France
| |
Collapse
|
6
|
Morisaku T, Sunada M, Miyazaki A, Sakai T, Matsuo K, Yui H. Dynamic Light Scattering Measurements for Soft Materials on Solid Substrates: Employing Evanescent-wave Illumination and Dark-field Collection with a High Numerical Aperture Microscope Objective. ANAL SCI 2020; 36:1211-1215. [PMID: 32418932 DOI: 10.2116/analsci.20p068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We developed an instrument that allows us to measure dynamic light scattering from soft materials on solid substrates by avoiding strong background due to the reflection light from substrates. In the instrument, samples on substrates are illuminated by evanescent-light field and the resultant scattered light from the samples is collected with a dark-field optical configuration by employing a high numerical aperture microscope objective. We applied the instrument to measure the dynamic properties of supported lipid bilayers (SLBs), which have been widely utilized in industries as functional materials such as biosensors. From the time course of the scattered light from the SLBs, the power spectrum with the broad peak ranging from 10 to 20 kHz is observed. The use of the microscope objectives enables us to apply the instrument to future light scattering imaging for dynamic properties of soft materials supported on various substrates by combining with conventional microscope systems.
Collapse
Affiliation(s)
- Toshinori Morisaku
- Water Frontier Science & Technology Research Center, Research Institute for Science & Technology, Tokyo University of Science
| | - Miki Sunada
- Department of Chemistry, Graduate School of Science, Tokyo University of Science
| | | | | | | | - Hiroharu Yui
- Water Frontier Science & Technology Research Center, Research Institute for Science & Technology, Tokyo University of Science.,Department of Chemistry, Graduate School of Science, Tokyo University of Science.,Department of Chemistry, Faculty of Science, Tokyo University of Science
| |
Collapse
|
7
|
Dejardin MJ, Hemmerle A, Sadoun A, Hamon Y, Puech PH, Sengupta K, Limozin L. Lamellipod Reconstruction by Three-Dimensional Reflection Interference Contrast Nanoscopy (3D-RICN). NANO LETTERS 2018; 18:6544-6550. [PMID: 30179011 DOI: 10.1021/acs.nanolett.8b03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
There are very few techniques to reconstruct the shape of a cell at nanometric resolution, and those that exist are almost exclusively based on fluorescence, implying limitations due to staining constraints and artifacts. Reflection interference contrast microscopy (RICM), a label-free technique, permits the measurement of nanometric distances between refractive objects. However, its quantitative application to cells has been largely limited due to the complex interferometric pattern caused by multiple reflections on internal or thin structures like lamellipodia. Here we introduce 3D reflection interference contrast nanoscopy, 3D-RICN, which combines information from multiple illumination wavelengths and aperture angles to characterize the lamellipodial region of an adherent cell in terms of its distance from the surface and its thickness. We validate this new method by comparing data obtained on fixed cells imaged with atomic force microscopy and quantitative phase imaging. We show that as expected, cells adhering to micropatterns exhibit a radial symmetry for the lamellipodial thickness. We demonstrate that the substrate-lamellipod distance may be as high as 100 nm. We also show how the method applies to living cells, opening the way for label-free dynamical study of cell structures with nanometric resolution.
Collapse
Affiliation(s)
| | | | - Anaïs Sadoun
- Aix Marseille Univ , CNRS, INSERM, LAI , Marseille 13288 , France
| | - Yannick Hamon
- Aix Marseille Univ , CNRS, INSERM, CIML , Marseille 13288 , France
| | | | - Kheya Sengupta
- Aix Marseille Univ , CNRS, CINAM , Marseille 13288 , France
| | - Laurent Limozin
- Aix Marseille Univ , CNRS, INSERM, LAI , Marseille 13288 , France
| |
Collapse
|
8
|
Yu H, Yang Y, Yang Y, Zhang F, Wang S, Tao N. Tracking fast cellular membrane dynamics with sub-nm accuracy in the normal direction. NANOSCALE 2018; 10:5133-5139. [PMID: 29488990 PMCID: PMC5854544 DOI: 10.1039/c7nr09483c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cellular membranes are important biomaterials with highly dynamic structures. Membrane dynamics plays an important role in numerous cellular processes, but precise tracking it is challenging due to the lack of tools with a highly sensitive and fast detection capability. Here we demonstrate a broad bandwidth optical imaging technique to measure cellular membrane displacements in the normal direction at sub-nm level detection limits and 20 μs temporal resolution (1 Hz-50 kHz). This capability allows us to study the intrinsic cellular membrane dynamics over a broad temporal and spatial spectrum. We measured the nanometer-scale stochastic fluctuations of the plasma membrane of HEK-293 cells, and found them to be highly dependent on the cytoskeletal structure of the cells. By analyzing the fluctuations, we further determine the mechanical properties of the cellular membranes. We anticipate that the method will contribute to the understanding of the basic cellular processes, and applications, such as mechanical phenotyping of cells at the single-cell level.
Collapse
Affiliation(s)
- Hui Yu
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuting Yang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yunze Yang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Fenni Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
9
|
Abstract
The nuclear envelope (NE) presents a physical boundary between the cytoplasm and the nucleoplasm, sandwiched in between two highly active systems inside the cell: cytoskeleton and chromatin. NE defines the shape and size of the cell nucleus, which increases during the cell cycle, accommodating for chromosome decondensation followed by genome duplication. In this work, we study nuclear shape fluctuations at short time scales of seconds in human cells. Using spinning disk confocal microscopy, we observe fast fluctuations of the NE, visualized by fluorescently labeled lamin A, and of the chromatin globule surface (CGS) underneath the NE, visualized by fluorescently labeled histone H2B. Our findings reveal that fluctuation amplitudes of both CGS and NE monotonously decrease during the cell cycle, serving as a reliable cell cycle stage indicator. Remarkably, we find that, while CGS and NE typically fluctuate in phase, they do exhibit localized regions of out-of-phase motion, which lead to separation of NE and CGS. To explore the mechanism behind these shape fluctuations, we use biochemical perturbations. We find the shape fluctuations of CGS and NE to be both thermally and actively driven, the latter caused by forces from chromatin and cytoskeleton. Such undulations might affect gene regulation as well as contribute to the anomalously high rates of nuclear transport by, e.g., stirring of molecules next to NE, or increasing flux of molecules through the nuclear pores.
Collapse
|
10
|
Marzban B, Yuan H. The Effect of Thermal Fluctuation on the Receptor-Mediated Adhesion of a Cell Membrane to an Elastic Substrate. MEMBRANES 2017; 7:E24. [PMID: 28448443 PMCID: PMC5489858 DOI: 10.3390/membranes7020024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/14/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022]
Abstract
Mechanics of the bilayer membrane play an important role in many biological and bioengineering problems such as cell-substrate and cell-nanomaterial interactions. In this work, we study the effect of thermal fluctuation and the substrate elasticity on the cell membrane-substrate adhesion. We model the adhesion of a fluctuating membrane on an elastic substrate as a two-step reaction comprised of the out-of-plane membrane fluctuation and the receptor-ligand binding. The equilibrium closed bond ratio as a function of substrate rigidity was computed by developing a coupled Fourier space Brownian dynamics and Monte Carlo method. The simulation results show that there exists a crossover value of the substrate rigidity at which the closed bond ratio is maximal.
Collapse
Affiliation(s)
- Bahador Marzban
- Department of Mechanical, Industrial & Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | - Hongyan Yuan
- Department of Mechanical, Industrial & Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
11
|
Monzel C, Schmidt D, Seifert U, Smith AS, Merkel R, Sengupta K. Nanometric thermal fluctuations of weakly confined biomembranes measured with microsecond time-resolution. SOFT MATTER 2016; 12:4755-4768. [PMID: 27142463 DOI: 10.1039/c6sm00412a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We probe the bending fluctuations of bio-membranes using highly deflated giant unilamellar vesicles (GUVs) bound to a substrate by a weak potential arising from generic interactions. The substrate is either homogeneous, with GUVs bound only by the weak potential, or is chemically functionalized with a micro-pattern of very strong specific binders. In both cases, the weakly adhered membrane is seen to be confined at a well-defined distance above the surface while it continues to fluctuate strongly. We quantify the fluctuations of the weakly confined membrane at the substrate proximal surface as well as of the free membrane at the distal surface of the same GUV. This strategy enables us to probe in detail the damping of fluctuations in the presence of the substrate, and to independently measure the membrane tension and the strength of the generic interaction potential. Measurements were done using two complementary techniques - dynamic optical displacement spectroscopy (DODS, resolution: 20 nm, 10 μs), and dual wavelength reflection interference contrast microscopy (DW-RICM, resolution: 4 nm, 50 ms). After accounting for the spatio-temporal resolution of the techniques, an excellent agreement between the two measurements was obtained. For both weakly confined systems we explore in detail the link between fluctuations on the one hand and membrane tension and the interaction potential on the other hand.
Collapse
Affiliation(s)
- Cornelia Monzel
- Aix-Marseille Université, CNRS UMR 7325 (Centre Interdisciplinaire de Nanosciences de Marseille - CINaM), Marseille Cedex 9, France. and Institute of Complex Systems 7 (ICS-7), Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Schmidt
- II. Institut für Theoretische Physik, Universität Stuttgart, Germany and Institut für Theoretische Physik, Friedrich Alexander Universität Erlangen-Nürnberg, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Germany
| | - Ana-Sunčana Smith
- Institut für Theoretische Physik, Friedrich Alexander Universität Erlangen-Nürnberg, Germany and Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Rudolf Merkel
- Institute of Complex Systems 7 (ICS-7), Forschungszentrum Jülich, Jülich, Germany
| | - Kheya Sengupta
- Aix-Marseille Université, CNRS UMR 7325 (Centre Interdisciplinaire de Nanosciences de Marseille - CINaM), Marseille Cedex 9, France.
| |
Collapse
|
12
|
Nanoscale characterization of vesicle adhesion by normalized total internal reflection fluorescence microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1244-53. [PMID: 26972045 DOI: 10.1016/j.bbamem.2016.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 11/20/2022]
Abstract
We recently proposed a straightforward fluorescence microscopy technique to study adhesion of Giant Unilamellar Vesicles. This technique is based on dual observations which combine epi-fluorescence microscopy and total internal reflection fluorescence (TIRF) microscopy: TIRF images are normalized by epi-fluorescence ones. By this way, it is possible to map the membrane/substrate separation distance with a nanometric resolution, typically ~20 nm, with a maximal working range of 300-400 nm. The purpose of this paper is to demonstrate that this technique is useful to quantify vesicle adhesion from ultra-weak to strong membrane-surface interactions. Thus, we have examined unspecific and specific adhesion conditions. Concerning unspecific adhesion, we have controlled the strength of electrostatic forces between negatively charged vesicles and various functionalized surfaces which exhibit a positive or a negative effective charge. Specific adhesion was highlighted with lock-and-key forces mediated by the well defined biotin/streptavidin recognition.
Collapse
|
13
|
Malissen B, Bongrand P. Early T cell activation: integrating biochemical, structural, and biophysical cues. Annu Rev Immunol 2015; 33:539-61. [PMID: 25861978 DOI: 10.1146/annurev-immunol-032414-112158] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells carry out the formidable task of identifying small numbers of foreign antigenic peptides rapidly and specifically against a very noisy environmental background of endogenous self-peptides. Early steps in T cell activation have thus fascinated biologists and are among the best-studied models of cell stimulation. This remarkable process, critical in adaptive immune responses, approaches and even seems to exceed the limitations set by the physical laws ruling molecular behavior. Despite the enormous amount of information concerning the nature of molecules involved in the T cell antigen receptor (TCR) signal transduction network, and the description of the nanoscale organization and real-time analysis of T cell responses, the general principles of information gathering and processing remain incompletely understood. Here we review currently accepted key data on TCR function, discuss the limitations of current research strategies, and suggest a novel model of TCR triggering and a few promising ways of going further into the integration of available data.
Collapse
Affiliation(s)
- Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy and Centre d'Immunophénomique, Aix-Marseille Université, INSERM U1104 and US012, CNRS UMR7280 and UMS3367, 13288 Marseille Cedex 09, France;
| | | |
Collapse
|
14
|
Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy. Nat Commun 2015; 6:8162. [PMID: 26437911 PMCID: PMC4600712 DOI: 10.1038/ncomms9162] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/25/2015] [Indexed: 01/09/2023] Open
Abstract
Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique—dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20 nm and 10 μs. The technique was validated by measuring bending fluctuations of model membranes. DODS was then used to explore the fluctuations in human red blood cells, which showed an ATP-induced enhancement of non-Gaussian behaviour. Plasma membrane fluctuations of human macrophages were quantified to this accuracy for the first time. Stimulation with a cytokine enhanced non-Gaussian contributions to these fluctuations. Simplicity of implementation, and high accuracy make DODS a promising tool for comprehensive understanding of stochastic membrane processes. Precise quantification of stochastic motions of biological membranes is limited by a lack of suitable detection methods. Here Monzel et al. develop dynamic optical displacement spectroscopy to measure stochastic membrane displacements at 20 nm/10 μs spatiotemporal resolution.
Collapse
|
15
|
Brodovitch A, Shenderov E, Cerundolo V, Bongrand P, Pierres A, van der Merwe PA. T lymphocytes need less than 3 min to discriminate between peptide MHCs with similar TCR-binding parameters. Eur J Immunol 2015; 45:1635-42. [PMID: 25782169 PMCID: PMC4657482 DOI: 10.1002/eji.201445214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/17/2015] [Accepted: 03/13/2015] [Indexed: 11/10/2022]
Abstract
T lymphocytes need to detect rare cognate foreign peptides among numerous foreign and self-peptides. This discrimination seems to be based on the kinetics of TCRs binding to their peptide-MHC (pMHC) ligands, but there is little direct information on the minimum time required for processing elementary signaling events and deciding to initiate activation. Here, we used interference reflection microscopy to study the early interaction between transfected human Jurkat T cells expressing the 1G4 TCR and surfaces coated with five different pMHC ligands of 1G4. The pMHC concentration required for inducing 50% maximal IFN-γ production by T cells, and 1G4-pMHC dissociation rates measured in soluble phase or on surface-bound molecules, displayed six- to sevenfold variation among pMHCs. When T cells were dropped onto pMHC-coated surfaces, rapid spreading occurred after a 2-min lag. The initial spreading rate measured during the first 45 s, and the contact area, were strongly dependent on the encountered TCR ligand. However, the lag duration did not significantly depend on encountered ligand. In addition, spreading appeared to be an all-or-none process, and the fraction of spreading cells was tightly correlated to the spreading rate and spreading area. Thus, T cells can discriminate between fairly similar TCR ligands within 2 min.
Collapse
Affiliation(s)
- Alexandre Brodovitch
- Lab Adhesion Cellulaire and Inflammation, Aix-Marseille UniversitéFrance
- INSERM U1067France
- CNRSU7333, France
| | - Eugene Shenderov
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, University of OxfordOxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, University of OxfordOxford, UK
| | - Pierre Bongrand
- Lab Adhesion Cellulaire and Inflammation, Aix-Marseille UniversitéFrance
- INSERM U1067France
- CNRSU7333, France
- Assistance Publique, Hôpitaux de MarseilleFrance
| | - Anne Pierres
- Lab Adhesion Cellulaire and Inflammation, Aix-Marseille UniversitéFrance
- INSERM U1067France
- CNRSU7333, France
| | | |
Collapse
|
16
|
Sackmann E, Smith AS. Physics of cell adhesion: some lessons from cell-mimetic systems. SOFT MATTER 2014; 10:1644-59. [PMID: 24651316 PMCID: PMC4028615 DOI: 10.1039/c3sm51910d] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cell adhesion is a paradigm of the ubiquitous interplay of cell signalling, modulation of material properties and biological functions of cells. It is controlled by competition of short range attractive forces, medium range repellant forces and the elastic stresses associated with local and global deformation of the composite cell envelopes. We review the basic physical rules governing the physics of cell adhesion learned by studying cell-mimetic systems and demonstrate the importance of these rules in the context of cellular systems. We review how adhesion induced micro-domains couple to the intracellular actin and microtubule networks allowing cells to generate strong forces with a minimum of attractive cell adhesion molecules (CAMs) and to manipulate other cells through filopodia over micrometer distances. The adhesion strength can be adapted to external force fluctuations within seconds by varying the density of attractive and repellant CAMs through exocytosis and endocytosis or protease-mediated dismantling of the CAM-cytoskeleton link. Adhesion domains form local end global biochemical reaction centres enabling the control of enzymes. Actin-microtubule crosstalk at adhesion foci facilitates the mechanical stabilization of polarized cell shapes. Axon growth in tissue is guided by attractive and repulsive clues controlled by antagonistic signalling pathways.
Collapse
Affiliation(s)
- Erich Sackmann
- Physics Department Technical University Munich, Germany
- Department of Physics, Ludwig-Maximillian University, Munich, Germany
| | - Ana-Sunčana Smith
- Institute for Theoretical Physics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Institute Rud̷er Bošković, Zagreb, Croatia.
| |
Collapse
|
17
|
A nanometre-scale resolution interference-based probe of interfacial phenomena between microscopic objects and surfaces. Nat Commun 2013; 4:1919. [PMID: 23715278 PMCID: PMC3675327 DOI: 10.1038/ncomms2865] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/11/2013] [Indexed: 12/03/2022] Open
Abstract
Interferometric techniques have proven useful to infer proximity and local surface profiles of microscopic objects near surfaces. But a critical trade-off emerges between accuracy and mathematical complexity when these methods are applied outside the vicinity of closest approach. Here we introduce a significant advancement that enables reflection interference contrast microscopy to provide nearly instantaneous reconstruction of an arbitrary convex object’s contour next to a bounding surface with nanometre resolution, making it possible to interrogate microparticle/surface interaction phenomena at radii of curvature 1,000 times smaller than those accessible by the conventional surface force apparatus. The unique view-from-below perspective of reflection interference contrast microscopy also reveals previously unseen deformations and allows the first direct observation of femtolitre-scale capillary condensation dynamics underneath micron-sized particles. Our implementation of reflection interference contrast microscopy provides a generally applicable nanometre-scale resolution tool that can be potentially exploited to dynamically probe ensembles of objects near surfaces so that statistical/probabilistic behaviour can be realistically captured. Interferometric techniques can provide valuable contact and profile information of microscopic objects on surfaces. This work uses reflection interference contrast microscopy to directly observe contact phenomena and presents novel analytical methods offering high-accuracy nanoscale resolution.
Collapse
|
18
|
Robert P, Touchard D, Bongrand P, Pierres A. Biophysical description of multiple events contributing blood leukocyte arrest on endothelium. Front Immunol 2013; 4:108. [PMID: 23750158 PMCID: PMC3654224 DOI: 10.3389/fimmu.2013.00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/26/2013] [Indexed: 12/16/2022] Open
Abstract
Blood leukocytes have a remarkable capacity to bind to and stop on specific blood vessel areas. Many studies have disclosed a key role of integrin structural changes following the interaction of rolling leukocytes with surface-bound chemoattractants. However, the functional significance of structural data and mechanisms of cell arrest are incompletely understood. Recent experiments revealed the unexpected complexity of several key steps of cell-surface interaction: (i) ligand-receptor binding requires a minimum amount of time to proceed and this is influenced by forces. (ii) Also, molecular interactions at interfaces are not fully accounted for by the interaction properties of soluble molecules. (iii) Cell arrest depends on nanoscale topography and mechanical properties of the cell membrane, and these properties are highly dynamic. Here, we summarize these results and we discuss their relevance to recent functional studies of integrin-receptor association in cells from a patient with type III leukocyte adhesion deficiency. It is concluded that an accurate understanding of all physical events listed in this review is needed to unravel the precise role of the multiple molecules and biochemical pathway involved in arrest triggering.
Collapse
Affiliation(s)
- Philippe Robert
- Laboratoire Adhésion and Inflammation, Aix-Marseille Université Marseille, France ; Institut National de la Santé et de la Recherche Médicale Marseille, France ; Centre National de la Recherche Scientifique Marseille, France ; Laboratoire d'Immunologie, Hôpitaux de Marseille, Hôpital de la Conception Marseille, France
| | | | | | | |
Collapse
|
19
|
He HT, Bongrand P. Membrane dynamics shape TCR-generated signaling. Front Immunol 2012; 3:90. [PMID: 22566969 PMCID: PMC3342369 DOI: 10.3389/fimmu.2012.00090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/07/2012] [Indexed: 12/25/2022] Open
Abstract
Despite intensive investigation, the mechanisms of T cell receptor (TCR)-mediated signal generation remain poorly understood. Here we review various dynamic processes at the cell membrane that might critically control this signaling. Firstly, we summarize recent reports providing new information on the sensitivity of TCR/ligand interaction to the membrane environment and particularly to applied forces. Secondly, we review recent evidence that forces and displacements are continuously generated at cell surfaces. Thirdly, we summarize recent experimental evidence demonstrating the capacity of forces to generate signals. Lastly, we provide a quantitative model to exemplify the capacity of dynamic processes to modulate TCR properties such as specificity that were previously difficult to explain with conventional models. It is concluded that the described dynamic processes must be integrated into current models of TCR signaling.
Collapse
Affiliation(s)
- Hai-Tao He
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2, Marseille, France
| | | |
Collapse
|
20
|
Job KM, Dull RO, Hlady V. Use of reflectance interference contrast microscopy to characterize the endothelial glycocalyx stiffness. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1242-9. [PMID: 22505668 DOI: 10.1152/ajplung.00341.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reflectance interference contrast microscopy (RICM) was used to study the mechanics of the endothelial glycocalyx. This technique tracks the vertical position of a glass microsphere probe that applies very light fluctuating loads to the outermost layer of the bovine lung microvascular endothelial cell (BLMVEC) glycocalyx. Fluctuations in probe vertical position are used to estimate the effective stiffness of the underlying layer. Stiffness was measured before and after removal of specific glycocalyx components. The mean stiffness of BLMVEC glycocalyx was found to be ~7.5 kT/nm(2) (or ~31 pN/nm). Enzymatic digestion of the glycocalyx with pronase or hyaluronan with hyaluronidase increased the mean effective stiffness of the glycocalyx; however, the increase of the mean stiffness on digestion of heparan sulfate with heparinase III was not significant. The results imply that hyaluronan chains act as a cushioning layer to distribute applied forces to the glycocalyx structure. Effective stiffness was also measured for the glycocalyx exposed to 0.1%, 1.0%, and 4.0% BSA; glycocalyx compliance increased at two extreme BSA concentrations. The RICM images indicated that glycocalyx thickness increases with BSA concentrations. Results demonstrate that RICM is sensitive to detect the subtle changes of glycocalyx compliance at the fluid-fiber interface.
Collapse
Affiliation(s)
- Kathleen M Job
- Dept. of Bioengineering, Univ. of Utah, BPRB, Rm. 108A, Salt Lake City, UT 84312, USA
| | | | | |
Collapse
|
21
|
Lam Hui K, Wang C, Grooman B, Wayt J, Upadhyaya A. Membrane dynamics correlate with formation of signaling clusters during cell spreading. Biophys J 2012; 102:1524-33. [PMID: 22500752 DOI: 10.1016/j.bpj.2012.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 01/31/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022] Open
Abstract
The morphology and duration of contacts between cells and adhesive surfaces play a key role in several biological processes, such as cell migration, cell differentiation, and the immune response. The interaction of receptors on the cell membrane with ligands on the adhesive surface leads to triggering of signaling pathways, which allow cytoskeletal rearrangement, and large-scale deformation of the cell membrane, which allows the cell to spread over the substrate. Despite numerous studies of cell spreading, the nanometer-scale dynamics of the membrane during formation of contacts, spreading, and initiation of signaling are not well understood. Using interference reflection microscopy, we study the kinetics of cell spreading at the micron scale, as well as the topography and fluctuations of the membrane at the nanometer scale during spreading of Jurkat T cells on antibody-coated substrates. We observed two modes of spreading, which were characterized by dramatic differences in membrane dynamics and topography. Formation of signaling clusters was closely related to the movement and morphology of the membrane in contact with the activating surface. Our results suggest that cell membrane morphology may be a critical constraint on signaling at the cell-substrate interface.
Collapse
Affiliation(s)
- King Lam Hui
- Department of Physics, University of Maryland, College Park, Maryland, USA
| | | | | | | | | |
Collapse
|
22
|
Loubet B, Seifert U, Lomholt MA. Effective tension and fluctuations in active membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031913. [PMID: 22587129 DOI: 10.1103/physreve.85.031913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Indexed: 05/31/2023]
Abstract
We calculate the fluctuation spectrum of the shape of a lipid vesicle or cell exposed to a nonthermal source of noise. In particular, we take constraints on the membrane area and the volume of fluid that it encapsulates into account when obtaining expressions for the dependency of the membrane tension on the noise. We then investigate three possible origins of the nonthermal noise taken from the literature: A direct force, which models an external medium pushing on the membrane, a curvature force, which models a fluctuating spontaneous curvature, and a permeation force coming from an active transport of fluid through the membrane. For the direct force and curvature force cases, we compare our results to existing experiments on active membranes.
Collapse
Affiliation(s)
- Bastien Loubet
- Department of Physics, MEMPHYS-Center for Biomembrane Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | | | | |
Collapse
|
23
|
Influence of substrate rigidity on primary nucleation of cell adhesion: a thermal fluctuation model. J Colloid Interface Sci 2011; 366:200-208. [PMID: 21999957 DOI: 10.1016/j.jcis.2011.09.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 01/09/2023]
Abstract
Experimental investigations have demonstrated that cells can actively sense and respond to physical aspects of their environments, such as substrate stiffness of biomaterials, via integrin receptors with the help of stochastic thermal undulations of cell membranes. This paper develops a physical model for the mechanism of integrin-dependent cell-substrate adhesion nucleation in order to investigate the influence of substrate stiffness on primary adhesion formation. In this model, a series of so-called energy potential wells are established to quantitatively describe force-driven conformational changes of integrins on elastic substrates with different rigidities. A concept of nucleation domain is proposed to characterize the necessary condition of integrin-mediated cell-substrate primary adhesion formation. In the framework of classical statistical mechanics, the competitive relationship is investigated between the local thermal undulations of plasma membranes and the conformational conversions of substrate-binding integrins. The quantitative dependence of integrin-mediated adhesion nucleation on substrate rigidities is systematically explored, which shows a reasonable agreement with existing experimental results.
Collapse
|
24
|
Atılgan E, Ovryn B. Reflectivity and topography of cells grown on glass-coverslips measured with phase-shifted laser feedback interference microscopy. BIOMEDICAL OPTICS EXPRESS 2011; 2:2417-2437. [PMID: 21833378 PMCID: PMC3149539 DOI: 10.1364/boe.2.002417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/05/2011] [Accepted: 07/15/2011] [Indexed: 05/31/2023]
Abstract
In spite of the advantages associated with the molecular specificity of fluorescence imaging, there is still a significant need to augment these approaches with label-free imaging. Therefore, we have implemented a form of interference microscopy based upon phase-shifted, laser-feedback interferometry and developed an algorithm that can be used to separate the contribution of the elastically scattered light by sub-cellular structures from the reflection at the coverslip-buffer interface. The method offers an opportunity to probe protein aggregation, index of refraction variations and structure. We measure the topography and reflection from calibration spheres and from stress fibers and adhesions in both fixed and motile cells. Unlike the data acquired with reflection interference contrast microscopy, where the reflection from adhesions can appear dark, our approach demonstrates that these regions have high reflectivity. The data acquired from fixed and live cells show the presence of a dense actin layer located ≈ 100 nm above the coverslip interface. Finally, the measured dynamics of filopodia and the lamella in a live cell supports retrograde flow as the dominate mechanism responsible for filopodia retraction.
Collapse
Affiliation(s)
- Erdinç Atılgan
- Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York,
USA
| | - Ben Ovryn
- Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York,
USA
| |
Collapse
|
25
|
Zidovska A, Sackmann E. On the mechanical stabilization of filopodia. Biophys J 2011; 100:1428-37. [PMID: 21402024 DOI: 10.1016/j.bpj.2011.01.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 01/12/2011] [Accepted: 01/27/2011] [Indexed: 01/13/2023] Open
Abstract
We studied force-induced elongation of filopodia by coupling magnetic tweezers to the tip through the bacterial coat protein invasin, which couples the force generator to the actin bundles (through myosin X), thus impeding the growth of the actin plus end. Single force pulses (15-30 s) with amplitudes between 20 and 600 pN and staircase-like force scenarios (amplitudes, ∼50 pN; step widths, 30 s) were applied. In both cases, the responses consist of a fast viscoelastic deflection followed by a linear flow regime. The deflections are reversible after switching off the forces, suggesting a mechanical memory. The elongation velocity exhibits an exponential distribution (half-width <v(1/2)>, ∼0.02 μm s(-1)) and did not increase systematically with the force amplitudes. We estimate the bending modulus (0.4 × 10(-23) J m) and the number of actin filaments (∼10) by analyzing filopodium bending fluctuations. Sequestering of intracellular Ca(2+) by BAPTA caused a strong reduction in the amplitude of elongation, whereas latrunculin A resulted in loss of the elastic response. We attribute the force-independent velocity to the elongation of actin bundles enabled by the force-induced actin membrane uncoupling and the reversibility by the treadmilling mechanism and an elastic response.
Collapse
|
26
|
Cretel E, Touchard D, Bongrand P, Pierres A. A new method for rapid detection of T lymphocyte decision to proliferate after encountering activating surfaces. J Immunol Methods 2011; 364:33-9. [DOI: 10.1016/j.jim.2010.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/16/2010] [Accepted: 10/19/2010] [Indexed: 12/13/2022]
|
27
|
Abstract
The processes of wound healing and collective cell migration have been studied for decades. Intensive research has been devoted to understanding the mechanisms involved in wound healing, but the role of cell-substrate interactions is still not thoroughly understood. Here we probe the role of cell-substrate interactions by examining in vitro the healing of monolayers of human corneal epithelial (HCE) cells cultured on artificial extracellular matrix (aECM) proteins. We find that the rate of wound healing is dependent on the concentration of fibronectin-derived (RGD) cell-adhesion ligands in the aECM substrate. The wound closure rate varies nearly sixfold on the substrates examined, despite the fact that the rates of migration and proliferation of individual cells show little sensitivity to the RGD concentration (which varies 40-fold). To explain this apparent contradiction, we study collective migration by means of a dynamic Monte Carlo simulation. The cells in the simulation spread, retract, and proliferate with probabilities obtained from a simple phenomenological model. The results indicate that the overall wound closure rate is determined primarily by the rate at which cells cross the boundary between the aECM protein and the matrix deposited under the cell sheet.
Collapse
|
28
|
Cretel E, Touchard D, Benoliel AM, Bongrand P, Pierres A. Early contacts between T lymphocytes and activating surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:194107. [PMID: 21386434 DOI: 10.1088/0953-8984/22/19/194107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cells continually probe their environment to adapt their behaviour. A current challenge is to determine how they analyse nearby surfaces and how they process information to take decisions. We addressed this problem by monitoring human T lymphocyte attachment to surfaces coated with activating anti-CD3 or control anti-HLA antibodies. Interference reflection microscopy allowed us to monitor cell-to-surface apposition with a few nanometre vertical resolution during the first minutes following contact. We found that (i) when a cell fell on a surface, contact extension was preceded by a lag of several tens of seconds. (ii) During this lag, vertical membrane undulations seemed to generate transient contacts with underlying surfaces. (iii) After the lag period, the contact area started increasing linearly with a rate of about 1.5 µm(2) s(-1) on activating surfaces and about 0.2 µm(2) s(-1) on control surfaces. (iv) Concomitantly with lateral surface extension, the apparent distance between cell membranes and surfaces steadily decreased. These results are consistent with the hypothesis that the cell decision to spread rapidly on activating surfaces resulted from the integration of information yielded by transient contacts with these surfaces generated by membrane undulations during a period of about 1 min.
Collapse
Affiliation(s)
- E Cretel
- INSERM UMR 600, Laboratory Adhesion and Inflammation, Parc Scientifique de Luminy, Marseille, France
| | | | | | | | | |
Collapse
|
29
|
Sengupta K, Limozin L. Adhesion of soft membranes controlled by tension and interfacial polymers. PHYSICAL REVIEW LETTERS 2010; 104:088101. [PMID: 20366967 DOI: 10.1103/physrevlett.104.088101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Indexed: 05/29/2023]
Abstract
We examine experimental and theoretical aspects of nonspecific adhesion of giant vesicles on modified surfaces as model systems for cell spreading. Using dual-wave interference microscopy and new analysis, membrane undulations as well as large scale vesicle shape are monitored. Measurements and modelling show that the nucleation of adhesion depends critically on the interfacial polymer and membrane tension. Patch growth is governed by local membrane geometry, adhesion energy, and local viscosity. Finally, spreading stops when tension induced by adhesion unfolds excess membrane area.
Collapse
Affiliation(s)
- Kheya Sengupta
- CNRS, Aix-Marseille University, CINaM-UPR3118, Campus Luminy, Case 913 F-13288, Marseille, France
| | | |
Collapse
|
30
|
Limozin L, Sengupta K. Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. Chemphyschem 2010; 10:2752-68. [PMID: 19816893 DOI: 10.1002/cphc.200900601] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adhesion can be quantified by measuring the distance between the interacting surfaces. Reflection interference contrast microscopy (RICM), with its ability to measure inter-surface distances under water with nanometric precision and milliseconds time resolution, is ideally suited to studying the dynamics of adhesion in soft systems. Recent technical developments, which include innovative image analysis and the use of multi-coloured illumination, have led to renewed interest in this technique. Unambiguous quantitative measurements have been achieved for colloidal beads and model membranes, thus revealing new insights and applications. Quantification of data from cells shows exciting prospects. Herein, we review the basic principles and recent developments of RICM applied to studies of dynamical adhesion processes in soft matter and cell biology and provide practical hints to potential users.
Collapse
Affiliation(s)
- Laurent Limozin
- Adhesion and Inflammation, CNRS UMR 6212, Inserm U600, Aix-Marseille University, Luminy, Marseille, France.
| | | |
Collapse
|
31
|
Do membrane undulations help cells probe the world? Trends Cell Biol 2009; 19:428-33. [PMID: 19709883 DOI: 10.1016/j.tcb.2009.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/07/2009] [Accepted: 05/13/2009] [Indexed: 01/12/2023]
Abstract
Cells sense physical properties of their environment including substratum rigidity, roughness, and topography of recognition sites. The cell surface displays continuous deformations of nanometer-scale amplitude and Hz frequency. Recent results support the hypothesis that these surface undulations constitute a powerful strategy for the rapid acquisition of environmental cues: transient contact with surroundings generates forces of piconewton intensity as a result of rapid formation and dissociation of intermolecular bonds. The combination of binding and steric forces is expected to drive conformational changes and lateral reorganization of membrane biomolecules, thus generating signaling cascades. We propose that spontaneous membrane mobility shapes the initial information generated by cell-to-surface contacts, and thereby biases later consequences of these interactions.
Collapse
|
32
|
Reister-Gottfried E, Sengupta K, Lorz B, Sackmann E, Seifert U, Smith AS. Dynamics of specific vesicle-substrate adhesion: from local events to global dynamics. PHYSICAL REVIEW LETTERS 2008; 101:208103. [PMID: 19113383 DOI: 10.1103/physrevlett.101.208103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Indexed: 05/27/2023]
Abstract
We present a synergistic combination of simulations and experimental data on the dynamics of membrane adhesion. We show that a change in either the density or the strength of the bonds results in very different dynamics. Such behavior is explained by introducing an effective binding affinity that emerges as a result of the competition between the strength of the chemical bonds and the environment defined by the fluctuating membrane.
Collapse
|
33
|
Abstract
It is now well demonstrated that cell adhesion to a foreign surface strongly influences prominent functions such as survival, proliferation, differentiation, migration or mediator release. Thus, a current challenge of major practical and theoretical interest is to understand how cells process and integrate environmental cues to determine future behaviour. The purpose of this review is to summarize some pieces of information that might serve this task. Three sequential points are discussed. First, selected examples are presented to illustrate the influence of substratum chemistry, topography and mechanical properties on nearly all aspects of cell behaviour observed during the days following adhesion. Second, we review reported evidence that long term cell behaviour is highly dependent on the alterations of cell shape and cytoskeletal organization that are often initiated during the minutes to hours following adhesion. Third, we review recently obtained information on cell membrane roughness and dynamics, as well as kinetics and mechanics of molecular interactions. This knowledge is required to understand the influence of substratum structure on cell signaling during the first minute following contact, before the appearance of detectable structural changes. It is suggested that unraveling the earliest phenomena following cell-to-substratum encounter might provide a tractable way of better understanding subsequent events.
Collapse
|
34
|
Abstract
Cell membranes are studded with protrusions that were thoroughly analyzed with electron microscopy. However, the nanometer-scale three-dimensional motions generated by cell membranes to fit the topography of foreign surfaces and initiate adhesion remain poorly understood. Here, we describe the dynamics of surface deformations displayed by monocytic cells bumping against fibronectin-coated surfaces. We observed membrane undulations with typically 5 nm amplitude and 5-10 s lifetime. Cell membranes behaved as independent units of micrometer size. Cells detected the presence of foreign surfaces at 50 nm separation, resulting in time-dependent amplification of membrane undulations. Molecular contact then ensued with apparent cell-membrane separation of 30-40 nm, and this distance steadily decreased during the following tens of seconds. Contact maturation was associated with in-plane egress of bulky molecules and robust membrane fluctuations. Thus, membrane undulations may be the major determinant of cell sensitivity to substrate topography, outcome of interaction, and initial kinetics of contact extension.
Collapse
|
35
|
|
36
|
Auth T, Safran SA, Gov NS. Fluctuations of coupled fluid and solid membranes with application to red blood cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:051910. [PMID: 18233690 DOI: 10.1103/physreve.76.051910] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 08/01/2007] [Indexed: 05/21/2023]
Abstract
The fluctuation spectra and the intermembrane interaction of two membranes at a fixed average distance are investigated. Each membrane can either be a fluid or a solid membrane, and in isolation, its fluctuations are described by a bare or a wave-vector-dependent bending modulus, respectively. The membranes interact via their excluded-volume interaction; the average distance is maintained by an external, homogeneous pressure. For strong coupling, the fluctuations can be described by a single, effective membrane that combines the elastic properties. For weak coupling, the fluctuations of the individual, noninteracting membranes are recovered. The case of a composite membrane consisting of one fluid and one solid membrane can serve as a microscopic model for the plasma membrane and cytoskeleton of the red blood cell. We find that, despite the complex microstructure of bilayers and cytoskeletons in a real cell, the fluctuations with wavelengths lambda greater, similar 400 nm are well described by the fluctuations of a single, polymerized membrane (provided that there are no inhomogeneities of the microstructure). The model is applied to the fluctuation data of discocytes ("normal" red blood cells), a stomatocyte, and an echinocyte. The elastic parameters of the membrane and an effective temperature that quantifies active, metabolically driven fluctuations are extracted from the experiments.
Collapse
Affiliation(s)
- Thorsten Auth
- Weizmann Institute of Science, Department of Materials and Interfaces, P.O. Box 26, Rehovot 76100, Israel
| | | | | |
Collapse
|
37
|
Popescu G, Park Y, Dasari RR, Badizadegan K, Feld MS. Coherence properties of red blood cell membrane motions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:031902. [PMID: 17930266 DOI: 10.1103/physreve.76.031902] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 04/30/2007] [Indexed: 05/15/2023]
Abstract
We use a highly sensitive, noncontact, optical interferometric technique to quantify the red blood cell membrane fluctuations at the nanometer and millisecond scales. The results reveal significant properties of both temporal and spatial coherence associated with the membrane dynamics. We show that these correlations can be accounted for by the viscoelastic properties of the cell membrane. From this measurement, we extract the loss and storage moduli associated with the membrane and find a crossover frequency at which the buffer viscosity seems to become dominant.
Collapse
Affiliation(s)
- Gabriel Popescu
- G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
With one or two exceptions, biological materials are "soft", meaning that they combine viscous and elastic elements. This mechanical behavior results from self-assembled supramolecular structures that are stabilized by noncovalent interactions. It is an ongoing and profound challenge to understand the self-organization of biological materials. In many cases, concepts can be imported from soft-matter physics and chemistry, which have traditionally focused on materials such as colloids, polymers, surfactants, and liquid crystals. Using these ideas, it is possible to gain a new perspective on phenomena as diverse as DNA condensation, protein and peptide fibrillization, lipid partitioning in rafts, vesicle fusion and budding, and others, as discussed in this selective review of recent highlights from the literature.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Reading, Berkshire RG6 6AD, UK.
| | | |
Collapse
|
40
|
Gov NS. Active elastic network: cytoskeleton of the red blood cell. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:011921. [PMID: 17358198 DOI: 10.1103/physreve.75.011921] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Indexed: 05/14/2023]
Abstract
In red blood cells there is a cortical cytoskeleton; a two-dimensional elastic network of membrane-attached proteins. We describe, using a simple model, how the metabolic activity of the cell, through the consumption of ATP, controls the stiffness of this elastic network. The unusual mechanical property of active strain softening is described and compared to experimental data. As a by-product of this activity there is also an active contribution to the amplitude of membrane fluctuations. We model this membrane as a field of independent "curvature motors," and calculate the spectrum of active fluctuations. We find that the active cytoskeleton contributes to the amplitude of the membrane height fluctuations at intermediate wavelengths, as observed experimentally.
Collapse
Affiliation(s)
- Nir S Gov
- Department of Chemical Physics, The Weizmann Institute of Science, P.O.B. 26, Rehovot, Israel 76100
| |
Collapse
|
41
|
Popescu G, Ikeda T, Goda K, Best-Popescu CA, Laposata M, Manley S, Dasari RR, Badizadegan K, Feld MS. Optical measurement of cell membrane tension. PHYSICAL REVIEW LETTERS 2006; 97:218101. [PMID: 17155774 DOI: 10.1103/physrevlett.97.218101] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Indexed: 05/12/2023]
Abstract
Using a novel noncontact technique based on optical interferometry, we quantify the nanoscale thermal fluctuations of red blood cells (RBCs) and giant unilamellar vesicles (GUVs). The measurements reveal a nonvanishing tension coefficient for RBCs, which increases as cells transition from a discocytic shape to a spherical shape. The tension coefficient measured for GUVs is, however, a factor of 4-24 smaller. By contrast, the bending moduli for cells and vesicles have similar values. This is consistent with the cytoskeleton confinement model, in which the cytoskeleton inhibits membrane fluctuations [Gov et al., Phys. Rev. Lett. 90, 228101, (2003).
Collapse
Affiliation(s)
- Gabriel Popescu
- George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|