1
|
Marchetta M, Morassut C, Toulouse J, Coccia E, Luppi E. Time-dependent ab initio molecular-orbital decomposition for high-harmonic generation spectroscopy. J Chem Phys 2024; 161:204111. [PMID: 39601288 DOI: 10.1063/5.0235179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
We propose a real-time time-dependent ab initio approach within a configuration-interaction-singles ansatz to decompose the high-harmonic generation (HHG) signal of molecules in terms of individual molecular-orbital (MO) contributions. Calculations have been performed by propagating the time-dependent Schrödinger equation with complex energies, in order to account for ionization of the system, and by using tailored Gaussian basis sets for high-energy and continuum states. We have studied the strong-field electron dynamics and the HHG spectra in aligned CO2 and H2O molecules. Contribution from MOs in the strong-field dynamics depends on the interplay between the MO ionization energy and the coupling between the MO and the laser-pulse symmetries. Such contributions characterize different portions of the HHG spectrum, indicating that the orbital decomposition encodes nontrivial information on the modulation of the strong-field dynamics. Our results correctly reproduce the MO contributions to HHG for CO2 as described in the literature experimental and theoretical data and lead to an original analysis of the role of the highest occupied molecular orbitals HOMO, HOMO-1, and HOMO-2 of H2O according to the polarization direction of the laser pulse.
Collapse
Affiliation(s)
- Marco Marchetta
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste 34127, Italy
| | - Chiara Morassut
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste 34127, Italy
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
| | - Julien Toulouse
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
- Institut Universitaire de France, F-75005 Paris, France
| | - Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste 34127, Italy
| | - Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
| |
Collapse
|
2
|
Fu TT, Zhou SS, Chen JG, Wang J, Guo FM, Yang YJ. Minimum structure of high-order harmonic spectrum from molecular multi-orbital effects involving inner-shell orbitals. OPTICS EXPRESS 2023; 31:30171-30183. [PMID: 37710565 DOI: 10.1364/oe.495031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
The spectral features of high-order harmonic spectra can provide rich information for probing the structure and dynamics of molecules in intense laser fields. We theoretically study the high harmonic spectrum with the laser polarization direction perpendicular to the N2O molecule and find a minimum structure in the plateau region of the harmonic spectrum. Through analyzing the time-dependent survival probability of different electronic orbitals and the time-dependent wave packet evolution, it is found that this minimum position is caused by the harmonic interference of HOMO a, HOMO-1, and HOMO-3 a orbitals. Moreover, this interference minimum is discovered over a wide frequency range of 0.087 a.u. to 0.093 a.u., as well as a range of driving laser intensities with peak amplitudes between 0.056 a.u. and 0.059 a.u.. This study sheds light on the multi-electron effects and ultrafast dynamics of inner-shell electrons in intense laser pulses, which are crucial for understanding and controlling chemical reactions in molecules.
Collapse
|
3
|
Luppi E, Coccia E. Role of Inner Molecular Orbitals in High-Harmonic Generation Spectra of Aligned Uracil. J Phys Chem A 2023; 127:7335-7343. [PMID: 37640677 DOI: 10.1021/acs.jpca.3c03990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this work, we decompose the high-harmonic generation (HHG) signal of aligned gas-phase uracil into single molecular-orbital (MO) contributions. We compute HHG spectra for a pulse linearly polarized perpendicular to the molecular plane, with an intensity of 0.6 and 0.85 × 1014 W/cm2 and a wavelength of 800 nm. We use the real-time time-dependent Configuration Interaction with singles method, coupled to a Gaussian-based representation of the time-dependent wavefunction. The strong-field dynamics is affected by the energy of the ionization/recombination channels and by the coupling between the orbital symmetry and laser polarization. In the configuration studied here, we expect that π-type MOs favorably couple with the incoming pulse and play a substantial role in generating the HHG spectrum. Indeed, we show that HOMO, HOMO - 1, and HOMO - 4, which all are π-like, determine the intensity of harmonic peaks at different energies, while HOMO - 2 and HOMO - 3 provide a smaller contribution. It is worth mentioning that HOMO - 4 produces a stronger signal than that from HOMO - 1, even though the corresponding ionization energy, in an one-electron picture, is around 2.5 eV larger and more than 4 eV larger than the HOMO one.
Collapse
Affiliation(s)
- Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris F-75005, France
| | - Emanuele Coccia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| |
Collapse
|
4
|
Lee DG, Moon S, Choi J, Wi SJ, Ahn J. Extreme ultraviolet pellicle wrinkles influence on mask 3D effects: experimental demonstration. APPLIED OPTICS 2023; 62:6307-6315. [PMID: 37706820 DOI: 10.1364/ao.495649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023]
Abstract
Extreme ultraviolet (EUV) lithography uses reflective optics and a thick mask absorber, leading to mask 3D (M3D) effects. These M3D effects cause disparities in the amplitudes and phases of EUV mask diffractions, impacting mask imaging performance and reducing process yields. Our findings demonstrate that wrinkles in the EUV pellicle can exacerbate M3D effects. This imbalance results in critical dimension variation, image contrast loss, and pattern shift in mask images. Therefore, the use of a pellicle material with thermodynamic characteristics that minimize wrinkles when exposed to EUV rays is imperative.
Collapse
|
5
|
Guo Q, Dendzik M, Berntsen MH, Grubišić-Čabo A, Li C, Chen W, Wang Y, Tjernberg O. Efficient low-density grating setup for monochromatization of XUV ultrafast light sources. OPTICS EXPRESS 2023; 31:8914-8926. [PMID: 36859996 DOI: 10.1364/oe.478319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Ultrafast light sources have become an indispensable tool to access and understand transient phenomenon in material science. However, a simple and easy-to-implement method for harmonic selection, with high transmission efficiency and pulse duration conservation, is still a challenge. Here we showcase and compare two approaches for selecting the desired harmonic from a high harmonic generation source while achieving the above goals. The first approach is the combination of extreme ultraviolet spherical mirrors with transmission filters and the second approach uses a normal-incidence spherical grating. Both solutions target time- and angle-resolved photoemission spectroscopy with photon energies in the 10-20 eV range but are relevant for other experimental techniques as well. The two approaches for harmonic selection are characterized in terms of focusing quality, photon flux, and temporal broadening. It is demonstrated that a focusing grating is able to provide much higher transmission as compared to the mirror+filter approach (3.3 times higher for 10.8 eV and 12.9 times higher for 18.1 eV), with only a slight temporal broadening (6.8% increase) and a somewhat larger spot size (∼30% increase). Overall, our study establishes an experimental perspective on the trade-off between a single grating normal incidence monochromator design and the use of filters. As such, it provides a basis for selecting the most appropriate approach in various fields where an easy-to-implement harmonic selection from high harmonic generation is needed.
Collapse
|
6
|
Investigation of the Spatio-Temporal Characteristics of High-Order Harmonic Generation Using a Bohmian Trajectory Scheme. Symmetry (Basel) 2023. [DOI: 10.3390/sym15030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
High-order harmonic generation of atoms irradiated by an ultrashort laser pulse was calculated by numerically solving the time-dependent Schrödinger equation and the Bohmian trajectory scheme. The harmonic spectra with the two schemes are quantitatively consistent. Using the wavelet behavior of the Bohmian trajectory, the spatio-temporal features of harmonic emission from different energy regions are analyzed. It is found that the spatio-temporal distribution of the harmonic well revealed the physical mechanism of harmonic generation. This method will contribute to the understanding of harmonic emission mechanisms in complex systems, which include many atoms.
Collapse
|
7
|
Langkabel F, Bande A. Quantum-Compute Algorithm for Exact Laser-Driven Electron Dynamics in Molecules. J Chem Theory Comput 2022; 18:7082-7092. [PMID: 36399652 DOI: 10.1021/acs.jctc.2c00878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this work, we investigate the capability of known quantum computing algorithms for fault-tolerant quantum computing to simulate the laser-driven electron dynamics of excitation and ionization processes in small molecules such as lithium hydride, which can be benchmarked against the most accurate time-dependent full configuration interaction (TD-FCI) calculations. The conventional TD-FCI wave packet propagation is reproduced using the Jordan-Wigner transformation for wave function and operators and the Trotter product formula for expressing the propagator. In addition, the time-dependent dipole moment, as an example of a time-dependent expectation value, is calculated using the Hadamard test. To include non-Hermitian operators in the ionization dynamics, a similar approach to the quantum imaginary time evolution (QITE) algorithm is employed to translate the propagator, including a complex absorption potential, into quantum gates. The computations are executed on a quantum computer simulator. By construction, all quantum computer algorithms, except for the QITE algorithm used only for ionization but not for excitation dynamics, would scale polynomially on a quantum computer with fully entangled qubits. In contrast, TD-FCI scales exponentially. Hence, quantum computation holds promises for substantial progress in the understanding of electron dynamics of excitation processes in increasingly large molecular systems, as has already been witnessed in electronic structure theory.
Collapse
Affiliation(s)
- Fabian Langkabel
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195Berlin, Germany
| | - Annika Bande
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany
| |
Collapse
|
8
|
Lee DG, Kim YW, Moon S, Ahn J. Effect of wrinkles on extreme ultraviolet pellicle reflectivity and local critical dimension. APPLIED OPTICS 2022; 61:5965-5971. [PMID: 36255836 DOI: 10.1364/ao.461413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023]
Abstract
Extreme ultraviolet (EUV) pellicles must have an EUV reflectance (EUVR) below 0.04% to prevent the reduction of critical dimension (CD). However, pellicle wrinkles cause localized CD variation by locally amplifying the EUVR. This study demonstrates that wrinkles can increase the pellicle's EUVR by approximately four times, and the CD drop depends on the relative position of the reflected light from the wrinkle to the 0th- or 1st-order diffracted light. The CD decreases by 6 nm. Therefore, even if the pellicle satisfies the requirement for the EUVR, we need to tightly control the generation of wrinkles to suppress CD variation during the entire exposure process.
Collapse
|
9
|
Shu Z, Liang H, Wang Y, Hu S, Chen S, Xu H, Ma R, Ding D, Chen J. Channel Coupling Dynamics of Deep-Lying Orbitals in Molecular High-Harmonic Generation. PHYSICAL REVIEW LETTERS 2022; 128:183202. [PMID: 35594086 DOI: 10.1103/physrevlett.128.183202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/15/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Investigation on structures in the high-harmonic spectrum has provided profuse information of molecular structure and dynamics in intense laser fields, based on which techniques of molecular ultrafast dynamics imaging have been developed. Combining ab initio calculations and experimental measurements on the high-harmonic spectrum of the CO_{2} molecule, we find a novel dip structure in the low-energy region of the harmonic spectrum which is identified as fingerprints of participation of deeper-lying molecular orbitals in the process and decodes the underlying attosecond multichannel coupling dynamics. Our work sheds new light on the ultrafast dynamics of molecules in intense laser fields.
Collapse
Affiliation(s)
- Zheng Shu
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
| | - Hongjing Liang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yichen Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Shilin Hu
- Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
| | - Shi Chen
- Center for Applied Physics and Technology, HEDPS, and School of Physics, Peking University, Beijing 100871, China
| | - Haifeng Xu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ri Ma
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Dajun Ding
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jing Chen
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
10
|
Coccia E, Luppi E. Time-dependent ab initioapproaches for high-harmonic generation spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:073001. [PMID: 34731835 DOI: 10.1088/1361-648x/ac3608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
High-harmonic generation (HHG) is a nonlinear physical process used for the production of ultrashort pulses in XUV region, which are then used for investigating ultrafast phenomena in time-resolved spectroscopies. Moreover, HHG signal itself encodes information on electronic structure and dynamics of the target, possibly coupled to the nuclear degrees of freedom. Investigating HHG signal leads to HHG spectroscopy, which is applied to atoms, molecules, solids and recently also to liquids. Analysing the number of generated harmonics, their intensity and shape gives a detailed insight of, e.g., ionisation and recombination channels occurring in the strong-field dynamics. A number of valuable theoretical models has been developed over the years to explain and interpret HHG features, with the three-step model being the most known one. Originally, these models neglect the complexity of the propagating electronic wavefunction, by only using an approximated formulation of ground and continuum states. Many effects unravelled by HHG spectroscopy are instead due to electron correlation effects, quantum interference, and Rydberg-state contributions, which are all properly captured by anab initioelectronic-structure approach. In this review we have collected recent advances in modelling HHG by means ofab initiotime-dependent approaches relying on the propagation of the time-dependent Schrödinger equation (or derived equations) in presence of a very intense electromagnetic field. We limit ourselves to gas-phase atomic and molecular targets, and to solids. We focus on the various levels of theory employed for describing the electronic structure of the target, coupled with strong-field dynamics and ionisation approaches, and on the basis used to represent electronic states. Selected applications and perspectives for future developments are also given.
Collapse
Affiliation(s)
- Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, via Giorgieri 1, 34127 Trieste, Italy
| | - Eleonora Luppi
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
- CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris, France
| |
Collapse
|
11
|
Pauletti CF, Coccia E, Luppi E. Role of exchange and correlation in high-harmonic generation spectra of H 2, N 2, and CO 2: Real-time time-dependent electronic-structure approaches. J Chem Phys 2021; 154:014101. [PMID: 33412879 DOI: 10.1063/5.0033072] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study arises from the attempt to answer the following question: how different descriptions of electronic exchange and correlation affect the high-harmonic generation (HHG) spectroscopy of H2, N2, and CO2 molecules? We compare HHG spectra for H2, N2, and CO2 with different ab initio electronic structure methods: real-time time-dependent configuration interaction and real-time time-dependent density functional theory (RT-TDDFT) using truncated basis sets composed of correlated wave functions expanded on Gaussian basis sets. In the framework of RT-TDDFT, we employ Perdew-Burke-Ernzerhof (PBE) and long-range corrected Perdew-Burke-Ernzerhof (LC-ωPBE) functionals. We study HHG spectroscopy by disentangling the effect of electronic exchange and correlation. We first analyze the electronic exchange alone, and in the case of RT-TDDFT with LC-ωPBE, we use ω = 0.3 and ω = 0.4 to tune the percentage of long-range Hartree-Fock exchange and short-range exchange PBE. Then, we added the correlation as described by the PBE functional. All the methods give very similar HHG spectra, and they seem not to be particularly sensitive to the different description of exchange and correlation or to the correct asymptotic behavior of the Coulomb potential. Despite this general trend, some differences are found in the region connecting the cutoff and the background. Here, the harmonics can be resolved with different accuracy depending on the theoretical schemes used. We believe that the investigation of the molecular continuum and its coupling with strong fields merits further theoretical investigations in the near future.
Collapse
Affiliation(s)
| | - Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Via Giorgieri 1, Trieste Italy
| | - Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
12
|
van den Wildenberg S, Mignolet B, Levine RD, Remacle F. Temporal and spatially resolved imaging of the correlated nuclear-electronic dynamics and of the ionized photoelectron in a coherently electronically highly excited vibrating LiH molecule. J Chem Phys 2019; 151:134310. [DOI: 10.1063/1.5116250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stephan van den Wildenberg
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
| | - Benoit Mignolet
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
| | - R. D. Levine
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - F. Remacle
- Theoretical Physical Chemistry, Research Unit Molecular Systems, University of Liège, B4000 Liège, Belgium
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
13
|
Ash R, Zhang K, Vura-Weis J. Photoinduced valence tautomerism of a cobalt-dioxolene complex revealed with femtosecond M-edge XANES. J Chem Phys 2019; 151:104201. [PMID: 31521068 DOI: 10.1063/1.5115227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cobalt complexes that undergo charge-transfer induced spin-transitions or valence tautomerism from low spin CoIII to high spin (HS) CoII are potential candidates for magneto-optical switches. We use M2,3-edge X-ray absorption near-edge structure (XANES) spectroscopy with 40 fs time resolution to measure the excited-state dynamics of CoIII(Cat-N-SQ)(Cat-N-BQ), where Cat-N-BQ and Cat-N-SQ are the singly and doubly reduced forms of the 2-(2-hydroxy-3,5-di-tert-butylphenyl-imino)-4,6-di-tert-butylcyclohexa-3,5-dienone ligand. The extreme ultraviolet probe pulses, produced using a tabletop high-harmonic generation light source, measure 3p → 3d transitions and are sensitive to the spin and oxidation state of the Co center. Photoexcitation at 525 nm produces a low-spin CoII ligand-to-metal charge transfer state which undergoes intersystem crossing to high-spin CoII in 67 fs. Vibrational cooling from this hot HS CoII state competes on the hundreds-of-fs time scale with back-intersystem crossing to the ground state, with 60% of the population trapped in a cold HS CoII state for 24 ps. Ligand field multiplet simulations accurately reproduce the ground-state spectra and support the excited-state assignments. This work demonstrates the ability of M2,3-edge XANES to measure ultrafast photophysics of molecular Co complexes.
Collapse
Affiliation(s)
- Ryan Ash
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, USA
| | - Kaili Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, USA
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, USA
| |
Collapse
|
14
|
Kraus PM, Wörner HJ. Perspektiven für das Verständnis fundamentaler Elektronenkorrelationen durch Attosekundenspektroskopie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201702759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| |
Collapse
|
15
|
Kraus PM, Wörner HJ. Perspectives of Attosecond Spectroscopy for the Understanding of Fundamental Electron Correlations. Angew Chem Int Ed Engl 2018; 57:5228-5247. [DOI: 10.1002/anie.201702759] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/29/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
16
|
Wörner HJ, Arrell CA, Banerji N, Cannizzo A, Chergui M, Das AK, Hamm P, Keller U, Kraus PM, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser JE, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven JA, Wenger O. Charge migration and charge transfer in molecular systems. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061508. [PMID: 29333473 PMCID: PMC5745195 DOI: 10.1063/1.4996505] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/25/2017] [Indexed: 05/12/2023]
Abstract
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.
Collapse
Affiliation(s)
| | - Christopher A Arrell
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Natalie Banerji
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Ursula Keller
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | | | - Elisa Liberatore
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pablo Lopez-Tarifa
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Chris Milne
- SwissFEL, Paul-Scherrer Institute, Villigen, Switzerland
| | - Jacques-E Moser
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Joël Teuscher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Oliver Wenger
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Ciappina MF, Pérez-Hernández JA, Landsman AS, Okell WA, Zherebtsov S, Förg B, Schötz J, Seiffert L, Fennel T, Shaaran T, Zimmermann T, Chacón A, Guichard R, Zaïr A, Tisch JWG, Marangos JP, Witting T, Braun A, Maier SA, Roso L, Krüger M, Hommelhoff P, Kling MF, Krausz F, Lewenstein M. Attosecond physics at the nanoscale. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:054401. [PMID: 28059773 DOI: 10.1088/1361-6633/aa574e] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond = 1 as = 10-18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.
Collapse
Affiliation(s)
- M F Ciappina
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany. Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, 18221 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jia C, Wang J, Li QY, Guo FM, Chen JG, Zeng SL, Yang YJ. Chirp-free isolated attosecond pulse generation from an atom irradiated by a fundamental terahertz pulse synchronizing an infrared laser pulse. OPTICS EXPRESS 2015; 23:32222-32229. [PMID: 26699012 DOI: 10.1364/oe.23.032222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We theoretically study high-order harmonic generation (HHG) and attosecond pulses from an atom irradiated synchronically by a terahertz (THz) pulse and an infrared laser pulse. For the HHG spectrum from the THz pulse alone and the combined pulse, an apparent peak-valley structure appears the platform region. Specially, for the periodic structure generated by an atom under the action of the combined pulse is originated from the interference between the electrons ionized at different instants in the laser field, which undergo many recollision and return to the core at the same time. Therefore, continuum harmonics with few chirps from the interference enhancement region can be achieved, which result in a chirp-free isolated attosecond pulse.
Collapse
|
19
|
Schuh K, Hader J, Moloney JV, Koch SW. Influence of many-body interactions during the ionization of gases by short intense optical pulses. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:033103. [PMID: 24730952 DOI: 10.1103/physreve.89.033103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Indexed: 06/03/2023]
Abstract
The excitation of atomic gases by short high-intensity optical pulses leads to significant electron ionization. In dilute systems, the generated distribution of ionized electrons is highly anisotropic, reflecting the quantum mechanical properties of the atomic states involved in the many photon transitions. For higher atomic densities, the Coulomb interaction in the electron-ion system leads to the development of an isotropic electron plasma. To study the ionization process in the presence of the many-body interaction, a fully microscopic model is developed that combines a generalized version of the optical Bloch equations describing the optical excitation with a microscopic description of the many-body interactions. The numerical evaluation shows that the Coulomb interaction significantly modifies the distribution anisotropy already during the excitation process. Whereas a reduced anisotropy is still present after the pulse for low ionization degrees and pressures, it is completely absent for elevated gas densities. An ionization degree is predicted that is significantly enhanced by the many-body interactions.
Collapse
Affiliation(s)
- K Schuh
- Arizona Center for Mathematical Sciences, Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA and College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - J Hader
- Arizona Center for Mathematical Sciences, Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA and College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - J V Moloney
- Arizona Center for Mathematical Sciences, Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA and College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - S W Koch
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA and Department of Physics and Material Science Center, Philipps-University, 35032 Marburg, Germany
| |
Collapse
|
20
|
Kraus PM, Rupenyan A, Wörner HJ. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics. PHYSICAL REVIEW LETTERS 2012; 109:233903. [PMID: 23368204 DOI: 10.1103/physrevlett.109.233903] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Indexed: 06/01/2023]
Abstract
We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.
Collapse
Affiliation(s)
- P M Kraus
- Laboratorium für Physikalische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
21
|
Moiseyev N, Gupta AK. Distinguishing between aligned and randomly oriented polar molecules by using a combination of strong laser field with a weak static field. Mol Phys 2012. [DOI: 10.1080/00268976.2012.674565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Salières P, Maquet A, Haessler S, Caillat J, Taïeb R. Imaging orbitals with attosecond and Ångström resolutions: toward attochemistry? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:062401. [PMID: 22790647 DOI: 10.1088/0034-4885/75/6/062401] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The recently developed attosecond light sources make the investigation of ultrafast processes in matter possible with unprecedented time resolution. It has been proposed that the very mechanism underlying the attosecond emission allows the imaging of valence orbitals with Ångström space resolution. This controversial idea together with the possibility of combining attosecond and Ångström resolutions in the same measurements has become a hot topic in strong-field science. Indeed, this could provide a new way to image the evolution of the molecular electron cloud during, e.g. a chemical reaction in 'real time'. Here we review both experimental and theoretical challenges raised by the implementation of these prospects. In particular, we show how the valence orbital structure is encoded in the spectral phase of the recombination dipole moment calculated for Coulomb scattering states, which allows a tomographic reconstruction of the orbital using first-order corrections to the plane-wave approach. The possibility of disentangling multi-channel contributions to the attosecond emission is discussed as well as the necessary compromise between the temporal and spatial resolutions.
Collapse
Affiliation(s)
- P Salières
- CEA-Saclay, IRAMIS, Service des Photons, Atomes et Molécules, 91191 Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
23
|
Zhao J, Lein M. Positioning of Bound Electron Wave Packets in Molecules Revealed by High-Harmonic Spectroscopy. J Phys Chem A 2011; 116:2723-7. [DOI: 10.1021/jp207838z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Zhao
- Institut für Theoretische Physik and Centre for Quantum Engineering and Space-Time Research (QUEST), Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Manfred Lein
- Institut für Theoretische Physik and Centre for Quantum Engineering and Space-Time Research (QUEST), Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| |
Collapse
|
24
|
|
25
|
|
26
|
Sukiasyan S, McDonald C, Van Vlack C, Destefani C, Varin C, Ivanov M, Brabec T. Correlated few-electron dynamics in intense laser fields. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2009.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Falcão-Filho EL, Gkortsas M, Gordon A, Kärtner FX. Analytic scaling analysis of high harmonic generation conversion efficiency. OPTICS EXPRESS 2009; 17:11217-29. [PMID: 19550522 DOI: 10.1364/oe.17.011217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Closed form expressions for the high harmonic generation (HHG) conversion efficiency are obtained for the plateau and cutoff regions. The presented formulas eliminate most of the computational complexity related to HHG simulations, and enable a detailed scaling analysis of HHG efficiency as a function of drive laser parameters and material properties. Moreover, in the total absence of any fitting procedure, the results show excellent agreement with experimental data reported in the literature. Thus, this paper opens new pathways for the global optimization problem of extreme ultraviolet (EUV) sources based on HHG.
Collapse
Affiliation(s)
- E L Falcão-Filho
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
28
|
Sukiasyan S, McDonald C, Destefani C, Ivanov MY, Brabec T. Multielectron correlation in high-harmonic generation: a 2D model analysis. PHYSICAL REVIEW LETTERS 2009; 102:223002. [PMID: 19658861 DOI: 10.1103/physrevlett.102.223002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 10/31/2008] [Indexed: 05/28/2023]
Abstract
We analyze the role of multielectron dynamics in high-harmonic generation spectroscopy, using an example of a two-electron system. We identify and systematically quantify the importance of correlation and exchange effects. One of the main sources for correlation is identified to be the polarization of the ion by the recombining continuum electron. This effect, which plays an important qualitative and quantitative role, seriously undermines the validity of the standard approaches to high-harmonic generation, which ignore the contribution of excited ionic states to the radiative recombination of the continuum electron.
Collapse
Affiliation(s)
- Suren Sukiasyan
- Physics Department and Center for Research in Photonics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
| | | | | | | | | |
Collapse
|
29
|
Wörner HJ, Niikura H, Bertrand JB, Corkum PB, Villeneuve DM. Observation of electronic structure minima in high-harmonic generation. PHYSICAL REVIEW LETTERS 2009; 102:103901. [PMID: 19392113 DOI: 10.1103/physrevlett.102.103901] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/17/2008] [Indexed: 05/12/2023]
Abstract
We report detailed measurements of the high-harmonic spectra generated from argon atoms. The spectra exhibit a deep minimum that is shown to be independent of the laser intensity, and is thus a clear measure of the electronic structure of the atom. We show that exact field-free continuum wave functions reproduce the minimum, but plane wave and Coulomb wave functions do not. This remarkable observation suggests that electronic structure can be accurately determined in high-harmonic experiments despite the presence of the strong laser field. Our results clarify the relation between high-harmonic generation and photoelectron spectroscopy. The use of exact continuum functions also resolves the ambiguity associated with the choice of the dispersion relation.
Collapse
Affiliation(s)
- Hans Jakob Wörner
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | | | | | | | | |
Collapse
|
30
|
Li W, Zhou X, Lock R, Patchkovskii S, Stolow A, Kapteyn HC, Murnane MM. Time-Resolved Dynamics in N2O4 Probed Using High Harmonic Generation. Science 2008; 322:1207-11. [DOI: 10.1126/science.1163077] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
31
|
|
32
|
Walters ZB, Tonzani S, Greene CH. Limits of the Plane Wave Approximation in the Measurement of Molecular Properties. J Phys Chem A 2008; 112:9439-47. [DOI: 10.1021/jp8031226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zachary B. Walters
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Stefano Tonzani
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Chris H. Greene
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
33
|
Patchkovskii S, Zhao Z, Brabec T, Villeneuve DM. High harmonic generation and molecular orbital tomography in multielectron systems. J Chem Phys 2007; 126:114306. [PMID: 17381205 DOI: 10.1063/1.2711809] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High harmonic radiation is produced when atoms or molecules are ionized by an intense femtosecond laser pulse. The radiated spectrum has been shown experimentally to contain information on the electronic structure of the molecule, which can be interpreted as an image of a single molecular orbital. Previous theory for high harmonic generation has been limited to the single-active-electron approximation. Utilizing semisudden approximation, the authors develop a theory of the recombination step in high harmonic generation and tomographic reconstruction in multielectron systems, taking into account electron spin statistics and electron-electron correlations within the parent molecule and the ion. They show that the resulting corrections significantly modify the theoretical predictions, and bring them in a better agreement with experiment. They further show that exchange contributions to harmonic radiation can be used to extract additional information on the electronic wave function.
Collapse
Affiliation(s)
- Serguei Patchkovskii
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | |
Collapse
|
34
|
Koval P, Wilken F, Bauer D, Keitel CH. Nonsequential double recombination in intense laser fields. PHYSICAL REVIEW LETTERS 2007; 98:043904. [PMID: 17358770 DOI: 10.1103/physrevlett.98.043904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Indexed: 05/14/2023]
Abstract
A second plateau in the harmonic spectra of laser-driven two-electron atoms is observed both in the numerical solution of a low-dimensional model helium atom and using an extended strong field approximation. It is shown that the harmonics well beyond the usual cutoff are due to the simultaneous recombination of the two electrons, which were emitted during different, previous half-cycles. The new cutoff is explained in terms of classical trajectories. Classical predictions and the time-frequency analysis of the ab initio quantum results are in excellent agreement. The mechanism corresponds to the inverse single photon double ionization process in the presence of a (low frequency) laser field.
Collapse
Affiliation(s)
- P Koval
- Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg, Germany
| | | | | | | |
Collapse
|
35
|
|
36
|
Gordon A, Kärtner FX, Rohringer N, Santra R. Role of many-electron dynamics in high harmonic generation. PHYSICAL REVIEW LETTERS 2006; 96:223902. [PMID: 16803307 DOI: 10.1103/physrevlett.96.223902] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 05/03/2006] [Indexed: 05/10/2023]
Abstract
High harmonic generation (HHG) in many-electron atoms is studied theoretically. The breakdown of the frozen-core single active electron approximation is demonstrated, as it predicts roughly the same radiation amplitude in all noble gases. This is in contradiction with experiments, where heavier noble gases are known to emit much stronger HHG radiation than lighter ones. This experimental behavior of the noble gases can be qualitatively reproduced when many-electron dynamics, within a simple approximation, is taken into account.
Collapse
Affiliation(s)
- Ariel Gordon
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|