1
|
Mimicking Multiorbital Systems with SU(N) Atoms: Hund’s Physics and Beyond. CONDENSED MATTER 2022. [DOI: 10.3390/condmat7010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physics of many interesting correlated materials can be captured by multiorbital Hubbard models, where conduction electrons feature an additional orbital degree of freedom. The multiorbital characteristic is not a mere complication, but it leads to an immensely richer landscape of physical regimes. One of the key features is the interplay between Hubbard repulsion and Hund’s exchange coupling, which has been shown to lead to orbital-selective correlations and to the existence of correlation-resilient metals (usually called Hund’s metals) defying Mott localization. Here, we show that experimentally available platforms of SU(N)-symmetric ultracold atoms can indeed mimic the rich physics disclosed by multiorbital materials, by exploiting the internal degrees of freedom of multicomponent atoms. We discuss in detail the SU(N) version of interaction-resilient Hund’s metal and some other interesting regimes.
Collapse
|
2
|
Nan N, Zhou WH, Zhang J, Li W, Yang JT, Chen J, Xiong YC, Tan G. Phase transitions induced by exchange coupling, magnetic field, and temperature in a strongly correlated molecular trimer with triangular topology. Phys Chem Chem Phys 2022; 24:22546-22556. [DOI: 10.1039/d2cp03313e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regulating the physical properties such as the quantum phase and the Kondo effect of molecular electronic devices near critical points may play a key role in increasing the robustness of...
Collapse
|
3
|
Nan N, Li W, Wang PC, Hu YJ, Tan GL, Xiong YC. Kondo effect and RKKY interaction assisted by magnetic anisotropy in a frustrated magnetic molecular device at zero and finite temperature. Phys Chem Chem Phys 2021; 23:5878-5887. [PMID: 33659975 DOI: 10.1039/d0cp05915c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular magnetic compounds, which combine the advantages of nanoscale behaviors with the properties of bulk magnetic materials, are particularly attractive in the fields of high-density information storage and quantum computing. Before molecular electronic devices can be fabricated, a crucial task is the measurement and understanding of the transport behaviors. Herein, we consider a magnetic molecular trimer sandwiched between two metal electrodes, and, with the aid of the sophisticated full density matrix numerical renormalization group (FDM-NRG) technique, we study the effect of magnetic anisotropy on the charge transport properties, illustrated by the local density of states (LDOS, which is proportional to the differential conductance), the Kondo effect, and the temperature and inter-monomer hopping robustness. Three kinds of energy peaks are clarified in the LDOS: the Coulomb, the Kondo and the Ruderman-Kittel-Kasuya-Yosida (RKKY) peaks. The local magnetic moment and entropy go through four different regimes as the temperature decreases. The Kondo temperature TK could be described by a generalized Haldane's formula, revealing in detail the process where the local moment is partially screened by the itinerant electrons. A relationship between the width of the Kondo resonant peak WK and TK is built, ensuring the extraction of TK from WK in an efficient way. As the inter-monomer hopping integral varies, the ground state of the trimer changes from a spin quadruplet to a magnetically frustrated phase, then to an orbital spin singlet through two first order quantum phase transitions. In the first two phases, the Kondo peak in the transmission coefficient reaches its unitary limit, while in the orbital spin singlet, it is totally suppressed. We demonstrate that magnetic anisotropy may also induce the Kondo effect, even without Coulomb repulsion, hence it is replaceable in the many-body behaviours at low temperature.
Collapse
Affiliation(s)
- Nan Nan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China. and School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Wei Li
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Peng-Chao Wang
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Yong-Jin Hu
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Guo-Long Tan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Yong-Chen Xiong
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| |
Collapse
|
4
|
Fernández J, Roura-Bas P, Aligia AA. Theory of Differential Conductance of Co on Cu(111) Including Co s and d Orbitals, and Surface and Bulk Cu States. PHYSICAL REVIEW LETTERS 2021; 126:046801. [PMID: 33576682 DOI: 10.1103/physrevlett.126.046801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
We revisit the theory of the Kondo effect observed by a scanning-tunneling microscope (STM) for transition-metal atoms (TMAs) on noble-metal surfaces, including d and s orbitals of the TMA, surface and bulk conduction states of the metal, and their hopping to the tip of the STM. Fitting the experimentally observed STM differential conductance for Co on Cu(111) including both the Kondo feature near the Fermi energy and the resonance below the surface band, we conclude that the STM senses mainly the Co s orbital and that the Kondo antiresonance is due to interference between states with electrons in the s orbital and a localized d orbital mediated by the conduction states.
Collapse
Affiliation(s)
- J Fernández
- Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina, Instituto Balseiro, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas, 1025 CABA, Argentina
| | - P Roura-Bas
- Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina, Instituto Balseiro, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas, 1025 CABA, Argentina
| | - A A Aligia
- Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina, Instituto Balseiro, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas, 1025 CABA, Argentina
| |
Collapse
|
5
|
Florens S, Freyn A, Roch N, Wernsdorfer W, Balestro F, Roura-Bas P, Aligia AA. Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:243202. [PMID: 21625035 DOI: 10.1088/0953-8984/23/24/243202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We review here some universal aspects of the physics of two-electron molecular transistors in the absence of strong spin-orbit effects. Several recent quantum dot experiments have shown that an electrostatic backgate could be used to control the energy dispersion of magnetic levels. We discuss how the generally asymmetric coupling of the metallic contacts to two different molecular orbitals can indeed lead to a gate-tunable Hund's rule in the presence of singlet and triplet states in the quantum dot. For gate voltages such that the singlet constitutes the (non-magnetic) ground state, one generally observes a suppression of low voltage transport, which can yet be restored in the form of enhanced cotunneling features at finite bias. More interestingly, when the gate voltage is controlled to obtain the triplet configuration, spin S = 1 Kondo anomalies appear at zero bias, with non-Fermi liquid features related to the underscreening of a spin larger than 1/2. Finally, the small bare singlet-triplet splitting in our device allows fine-tuning with the gate between these two magnetic configurations, leading to an unscreening quantum phase transition. This transition occurs between the non-magnetic singlet phase, where a two-stage Kondo effect occurs, and the triplet phase, where the partially compensated (underscreened) moment is akin to a magnetically 'ordered' state. These observations are put theoretically into a consistent global picture by using new numerical renormalization group simulations, tailored to capture sharp finite-voltage cotunneling features within the Coulomb diamonds, together with complementary out-of-equilibrium diagrammatic calculations on the two-orbital Anderson model. This work should shed further light on the complicated puzzle still raised by multi-orbital extensions of the classic Kondo problem.
Collapse
Affiliation(s)
- Serge Florens
- Institut Néel, CNRS et Université Joseph Fourier, BP 166, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Roura Bas P, Aligia AA. Nonequilibrium dynamics of a singlet-triplet Anderson impurity near the quantum phase transition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:025602. [PMID: 21386260 DOI: 10.1088/0953-8984/22/2/025602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We study the singlet-triplet Anderson model (STAM) in which a configuration with a doublet is hybridized with another containing a singlet and a triplet, as a minimal model to describe two-level quantum dots coupled to two metallic leads in effectively a one-channel fashion. The model has a quantum phase transition which separates regions of a doublet and a singlet ground state. The limits of integer valence of the STAM (which include a model similar to the underscreened spin-1 Kondo model) are derived and used to predict the behavior of the conductance through the system on both sides of the transition, where it jumps abruptly. At a special quantum critical line, the STAM can be mapped to an infinite- U ordinary Anderson model (OAM) plus a free spin 1/2. We use this mapping to obtain the spectral densities of the STAM as a function of those of the OAM at the transition. Using the non-crossing approximation (NCA), we calculate the spectral densities and conductance through the system as a function of temperature and bias voltage, and determine the changes that take place at the quantum phase transition. The separation of the spectral density into a singlet and a triplet part allows us to shed light on the underlying physics and to explain a shoulder observed recently in the zero bias conductance as a function of temperature in transport measurements through a single fullerene molecule (Roch et al 2008 Nature 453 633). The structure with three peaks observed in nonequilibrium transport in these experiments is also explained.
Collapse
Affiliation(s)
- P Roura Bas
- Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, 1650 San Martín, Buenos Aires, Argentina.
| | | |
Collapse
|