1
|
Gramlich JM, Zarif M, Bowles RK. Is there a granular potential? SOFT MATTER 2023; 19:1373-1383. [PMID: 36723165 DOI: 10.1039/d2sm01636b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Granular materials, such as sand or grain, exhibit many structural and dynamic characteristics similar to those observed in molecular systems, despite temperature playing no role in their properties. This has led to an effort to develop a statistical mechanics for granular materials that has focused on establishing an equivalent to the microcanonical ensemble and a temperature-like thermodynamic variable. Here, we expand on these ideas by introducing a granular potential into the Edwards ensemble, as an analogue to the chemical potential, and explore its properties using a simple model of a granular system. A simple kinetic Monte Carlo simulation of the model shows the effect of mass transport leading to equilibrium and how this is connected to the redistribution of volume in the system. An exact analytical treatment of the model shows that the compactivity and the ratio of the granular potential to the compactivity determine the equilibrium between two open systems that are able to exchange volume and particles, and that mass moves from high to low values of this ratio. Analysis of the granular potential shows that adding a particle to the system increases the entropy at high compactivity, but decreases the entropy at low compactivity. Finally, we demonstrate the use of a small system thermodynamics method for the measurement of granular potential differences.
Collapse
Affiliation(s)
- Josh M Gramlich
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7H 0H1, Canada.
| | - Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| | - Richard K Bowles
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7H 0H1, Canada.
- Centre for Quantum Topology and its Applications (quanTA), University of Saskatchewan, SK S7N 5E6, Canada
| |
Collapse
|
2
|
Yousafzai MS, Yadav V, Amiri S, Errami Y, Amiri S, Murrell M. Active Regulation of Pressure and Volume Defines an Energetic Constraint on the Size of Cell Aggregates. PHYSICAL REVIEW LETTERS 2022; 128:048103. [PMID: 35148133 DOI: 10.1103/physrevlett.128.048103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
We explore the relationship between the nonequilibrium generation of myosin-induced active stress within the F-actin cytoskeleton and the pressure-volume relationship of cellular aggregates as models of simple tissues. We find that due to active stress, aggregate surface tension depends upon its size. As a result, both pressure and cell number density depend on size and violate equilibrium assumptions. However, the relationship between them resembles an equilibrium equation of state with an effective temperature. This suggests that bulk and surface properties of aggregates balance to yield a constant average work performed by each cell on their environment in regulating tissue size. These results describe basic physical principles that govern the size of cell aggregates.
Collapse
Affiliation(s)
- M S Yousafzai
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
- Center for Cancer Systems Biology, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
| | - V Yadav
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
| | - S Amiri
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
- Department of Mechanical Engineering and Material Science, Yale University, 10 Hillhouse Avenue, New Haven, Connecticut 06511, USA
| | - Y Errami
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
- Department of Genetics, Yale School of Medicine, Sterling Hall of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
- Center for Cancer Systems Biology, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
| | - S Amiri
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
| | - M Murrell
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
- Center for Cancer Systems Biology, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
- Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06511, USA
| |
Collapse
|
3
|
Guioth J, Bertin E. Nonequilibrium grand-canonical ensemble built from a physical particle reservoir. Phys Rev E 2021; 103:022107. [PMID: 33736010 DOI: 10.1103/physreve.103.022107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/12/2021] [Indexed: 11/07/2022]
Abstract
We introduce a nonequilibrium grand-canonical ensemble defined by considering the stationary state of a driven system of particles put in contact with a particle reservoir. When an additivity assumption holds for the large deviation function of density, a chemical potential of the reservoir can be defined. The grand-canonical distribution then takes a form similar to the equilibrium one. At variance with equilibrium, though, the probability weight is "renormalized" by a contribution coming from the contact, with respect to the canonical probability weight of the isolated system. A formal grand-canonical potential can be introduced in terms of a scaled cumulant generating function, defined as the Legendre-Fenchel transform of the large deviation function of density. The role of the formal Legendre parameter can be played, physically, by the chemical potential of the reservoir when the latter can be defined, or by a potential energy difference applied between the system and the reservoir. Static fluctuation-response relations naturally follow from the large deviation structure. Some of the results are illustrated on two different explicit examples, a gas of noninteracting active particles and a lattice model of interacting particles.
Collapse
Affiliation(s)
- Jules Guioth
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, England, United Kingdom
| | - Eric Bertin
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| |
Collapse
|
4
|
Li J, Wang ZL. Fluctuation-dissipation analysis of nonequilibrium thermal transport at the hydrate dissociation interface. Phys Chem Chem Phys 2019; 21:23492-23500. [PMID: 31617505 DOI: 10.1039/c9cp04780h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a nonequilibrium molecular-dynamics simulation in an NVE ensemble was performed to investigate the spontaneous dissociation of methane-hydrate when it came in contact with liquid water. The nonequilibrium in the interface region is linked to the dissociation process of the hydrate near the interface according to the Onsager's hypothesis. The simulated thickness of the interface was found to be close to the acoustic phonon mean path of methane hydrate and agreed with the reference value. The normalized heat flow autocorrelation function was introduced to study fluctuation-dissipation in terms of the thickness and moving velocity of the interface and the Stefan number. This helped to clearly identify three distinct hydrate-decomposition regimes dominated by sensible heat, latent heat and an intrinsically unstable lattice framework. It was found that the fluctuation-dissipation theory could express the nonequilibrium nature in the front two stages before the threshold was reached, and the dissociation rate increased in the latter stage; this was different from the case of thermal-driven dissociation. The Stefan number decreased rapidly with dissociation in the initial stage and then fluctuated in the intermediate stage; this was analogous to the fluctuation characteristics of the heat flow autocorrelation function. The Stefan number effect shows that thermal dissipation drives the hydrate dissociation and correlates fluctuation to the nonequilibrium nature. It was also found that a small Stefan number was enough to break up the residual hydrate soon after the threshold was achieved. The transient interfacial thermal resistance of the interfacial region was obtained as a typical value in the range of 10-7-10-9 m2 K W-1. This justifies that fluctuation-dissipation exists in the nonequilibrium process of hydrate dissociation either in terms of heat flux, as observed in this study, or the diffusion of guest molecules, as reported in other studies.
Collapse
Affiliation(s)
- Jia Li
- Department of Energy and Power Engineering, China University of Petroleum, Qingdao 266580, China.
| | | |
Collapse
|
5
|
Guioth J, Bertin E. Nonequilibrium chemical potentials of steady-state lattice gas models in contact: A large-deviation approach. Phys Rev E 2019; 100:052125. [PMID: 31870002 DOI: 10.1103/physreve.100.052125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 06/10/2023]
Abstract
We introduce a general framework to describe the stationary state of two driven systems exchanging particles or mass through a contact, in a slow exchange limit. The definition of chemical potentials for the systems in contact requires that the large-deviation function describing the repartition of mass between the two systems is additive, in the sense of being a sum of contributions from each system. We show that this additivity property does not hold for an arbitrary contact dynamics, but is satisfied on condition that a macroscopic detailed balance condition holds at contact, and that the coarse-grained contact dynamics satisfies a factorization property. However, the nonequilibrium chemical potentials of the systems in contact keep track of the contact dynamics, and thus do not obey an equation of state. These nonequilibrium chemical potentials can be related either to the equilibrium chemical potential, or to the nonequilibrium chemical potential of the isolated systems. Results are applied both to an exactly solvable driven lattice gas model and to the Katz-Lebowitz-Spohn model using a numerical procedure to evaluate the chemical potential. The breaking of the additivity property is also illustrated on the exactly solvable model.
Collapse
Affiliation(s)
- Jules Guioth
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Eric Bertin
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| |
Collapse
|
6
|
Chakraborti S, Pradhan P. Additivity and density fluctuations in Vicsek-like models of self-propelled particles. Phys Rev E 2019; 99:052604. [PMID: 31212568 DOI: 10.1103/physreve.99.052604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 11/07/2022]
Abstract
We study coarse-grained density fluctuations in the disordered phase of the paradigmatic Vicsek-like models of self-propelled particles with alignment interactions and random self-propulsion velocities. By numerically integrating a fluctuation-response relation-the direct consequence of an additivity property-we compute logarithm of the large-deviation probabilities of the coarse-grained subsystem density, while the system is in the disordered fluid phase with vanishing macroscopic velocity. The large-deviation probabilities, computed within additivity, agree remarkably well with that obtained from direct microscopic simulations of the models. Our results provide evidence of the existence of an equilibriumlike chemical potential, which governs the coarse-grained density fluctuations in the Vicsek-like models. Moreover, comparison of the particle-number fluctuations among several self-propelled particle systems suggests a common mechanism through which the number fluctuations arise in such systems.
Collapse
Affiliation(s)
- Subhadip Chakraborti
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
7
|
Guioth J, Bertin E. Lack of an equation of state for the nonequilibrium chemical potential of gases of active particles in contact. J Chem Phys 2019; 150:094108. [DOI: 10.1063/1.5085740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jules Guioth
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- CNRS, LIPhy, Université Grenoble Alpes, F-38000 Grenoble, France
| | - Eric Bertin
- CNRS, LIPhy, Université Grenoble Alpes, F-38000 Grenoble, France
| |
Collapse
|
8
|
DeGiuli E. Field Theory for Amorphous Solids. PHYSICAL REVIEW LETTERS 2018; 121:118001. [PMID: 30265104 DOI: 10.1103/physrevlett.121.118001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Glasses at low temperature fluctuate around their inherent states; glassy anomalies reflect the structure of these states. Recently, there have been numerous observations of long-range stress correlations in glassy materials, from supercooled liquids to colloids and granular materials, but without a common explanation. Herein it is shown, using a field theory of inherent states, that long-range stress correlations follow from mechanical equilibrium alone, with explicit predictions for stress correlations in two and three dimensions. "Equations of state" relating fluctuations to imposed stresses are derived, as well as field equations that fix the spatial structure of stresses in arbitrary geometries. Finally, a new holographic quantity in 3D amorphous systems is identified.
Collapse
Affiliation(s)
- E DeGiuli
- Institut de Physique Théorique Philippe Meyer, École Normale Supérieure, PSL University, Sorbonne Universités, CNRS, 75005 Paris, France
| |
Collapse
|
9
|
|
10
|
Guioth J, Bertin E. Large deviations and chemical potential in bulk-driven systems in contact. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/123/10002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Solon AP, Stenhammar J, Cates ME, Kafri Y, Tailleur J. Generalized thermodynamics of phase equilibria in scalar active matter. Phys Rev E 2018; 97:020602. [PMID: 29548246 DOI: 10.1103/physreve.97.020602] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Indexed: 04/26/2023]
Abstract
Motility-induced phase separation (MIPS) arises generically in fluids of self-propelled particles when interactions lead to a kinetic slowdown at high densities. Starting from a continuum description of scalar active matter akin to a generalized Cahn-Hilliard equation, we give a general prescription for the mean densities of coexisting phases in flux-free steady states that amounts, at a hydrodynamics scale, to extremizing an effective free energy. We illustrate our approach on two well-known models: self-propelled particles interacting either through a density-dependent propulsion speed or via direct pairwise forces. Our theory accounts quantitatively for their phase diagrams, providing a unified description of MIPS.
Collapse
Affiliation(s)
- Alexandre P Solon
- Massachusetts Institute of Technology, Department of Physics, Cambridge, Massachusetts 02139, USA
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Yariv Kafri
- Department of Physics, Technion, Haifa 32000, Israel
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
12
|
Junot G, Briand G, Ledesma-Alonso R, Dauchot O. Active versus Passive Hard Disks against a Membrane: Mechanical Pressure and Instability. PHYSICAL REVIEW LETTERS 2017; 119:028002. [PMID: 28753366 DOI: 10.1103/physrevlett.119.028002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 06/07/2023]
Abstract
We experimentally study the mechanical pressure exerted by a set of respectively passive isotropic and self-propelled polar disks onto two different flexible unidimensional membranes. In the case of the isotropic disks, the mechanical pressure, inferred from the shape of the membrane, is identical for both membranes and follows the equilibrium equation of state for hard disks. On the contrary, for the self-propelled disks, the mechanical pressure strongly depends on the membrane in use and thus is not a state variable. When self-propelled disks are present on both sides of the membrane, we observe an instability of the membrane akin to the one predicted theoretically for active Brownian particles against a soft wall. In that case, the integrated mechanical pressure difference across the membrane cannot be computed from the sole knowledge of the packing fractions on both sides, further evidence of the absence of an equation of state.
Collapse
Affiliation(s)
- G Junot
- UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - G Briand
- UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - R Ledesma-Alonso
- UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- CONACYT-Universidad de Quintana Roo, Boulevard Bahía s/n, Chetumal, 77019 Quintana Roo, México
| | - O Dauchot
- UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
13
|
Das A, Kundu A, Pradhan P. Einstein relation and hydrodynamics of nonequilibrium mass transport processes. Phys Rev E 2017; 95:062128. [PMID: 28709216 DOI: 10.1103/physreve.95.062128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 06/07/2023]
Abstract
We derive hydrodynamics of paradigmatic conserved-mass transport processes on a ring. The systems, governed by chipping, diffusion, and coalescence of masses, eventually reach a nonequilibrium steady state, having nontrivial correlations, with steady-state measures in most cases not known. In these processes, we analytically calculate two transport coefficients, bulk-diffusion coefficient and conductivity. Remarkably, the two transport coefficients obey an equilibrium-like Einstein relation even when the microscopic dynamics violates detailed balance and systems are far from equilibrium. Moreover, we show, using a macroscopic fluctuation theory, that the probability of large deviation in density, obtained from the above hydrodynamics, is in complete agreement with the same derived earlier by Das et al. [Phys. Rev. E 93, 062135 (2016)2470-004510.1103/PhysRevE.93.062135] using an additivity property.
Collapse
Affiliation(s)
- Arghya Das
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Anupam Kundu
- International Centre for Theoretical Sciences, TIFR, Bangalore 560012, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
14
|
Das A, Chatterjee S, Pradhan P. Spatial correlations, additivity, and fluctuations in conserved-mass transport processes. Phys Rev E 2016; 93:062135. [PMID: 27415236 DOI: 10.1103/physreve.93.062135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 11/07/2022]
Abstract
We exactly calculate two-point spatial correlation functions in steady state in a broad class of conserved-mass transport processes, which are governed by chipping, diffusion, and coalescence of masses. We find that the spatial correlations are in general short-ranged and, consequently, on a large scale, these transport processes possess a remarkable thermodynamic structure in the steady state. That is, the processes have an equilibrium-like additivity property and, consequently, a fluctuation-response relation, which help us to obtain subsystem mass distributions in the limit of subsystem size large.
Collapse
Affiliation(s)
- Arghya Das
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Sayani Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
15
|
Chakraborti S, Mishra S, Pradhan P. Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles. Phys Rev E 2016; 93:052606. [PMID: 27300950 DOI: 10.1103/physreve.93.052606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 06/06/2023]
Abstract
Using an additivity property, we study particle-number fluctuations in a system of interacting self-propelled particles, called active Brownian particles (ABPs), which consists of repulsive disks with random self-propulsion velocities. From a fluctuation-response relation, a direct consequence of additivity, we formulate a thermodynamic theory which captures the previously observed features of nonequilibrium phase transition in the ABPs from a homogeneous fluid phase to an inhomogeneous phase of coexisting gas and liquid. We substantiate the predictions of additivity by analytically calculating the subsystem particle-number distributions in the homogeneous fluid phase away from criticality where analytically obtained distributions are compatible with simulations in the ABPs.
Collapse
Affiliation(s)
- Subhadip Chakraborti
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Shradha Mishra
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
16
|
Das A, Chatterjee S, Pradhan P, Mohanty PK. Additivity property and emergence of power laws in nonequilibrium steady states. Phys Rev E 2015; 92:052107. [PMID: 26651647 DOI: 10.1103/physreve.92.052107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 11/07/2022]
Abstract
We show that an equilibriumlike additivity property can remarkably lead to power-law distributions observed frequently in a wide class of out-of-equilibrium systems. The additivity property can determine the full scaling form of the distribution functions and the associated exponents. The asymptotic behavior of these distributions is solely governed by branch-cut singularity in the variance of subsystem mass. To substantiate these claims, we explicitly calculate, using the additivity property, subsystem mass distributions in a wide class of previously studied mass aggregation models as well as in their variants. These results could help in the thermodynamic characterization of nonequilibrium critical phenomena.
Collapse
Affiliation(s)
- Arghya Das
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700098, India
| | - Sayani Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700098, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700098, India
| | - P K Mohanty
- CMP Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| |
Collapse
|
17
|
Durand M. Statistical mechanics of two-dimensional foams: Physical foundations of the model. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:137. [PMID: 26701712 DOI: 10.1140/epje/i2015-15137-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
In a recent series of papers, a statistical model that accounts for correlations between topological and geometrical properties of a two-dimensional shuffled foam has been proposed and compared with experimental and numerical data. Here, the various assumptions on which the model is based are exposed and justified: the equiprobability hypothesis of the foam configurations is argued. The range of correlations between bubbles is discussed, and the mean-field approximation that is used in the model is detailed. The two self-consistency equations associated with this mean-field description can be interpreted as the conservation laws of number of sides and bubble curvature, respectively. Finally, the use of a "Grand-Canonical" description, in which the foam constitutes a reservoir of sides and curvature, is justified.
Collapse
Affiliation(s)
- Marc Durand
- Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205, Paris Cedex 13, France.
| |
Collapse
|
18
|
Chatterjee S, Pradhan P, Mohanty PK. Zeroth law and nonequilibrium thermodynamics for steady states in contact. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062136. [PMID: 26172690 DOI: 10.1103/physreve.91.062136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 06/04/2023]
Abstract
We ask what happens when two nonequilibrium systems in steady state are kept in contact and allowed to exchange a quantity, say mass, which is conserved in the combined system. Will the systems eventually evolve to a new stationary state where a certain intensive thermodynamic variable, like equilibrium chemical potential, equalizes following the zeroth law of thermodynamics and, if so, under what conditions is it possible? We argue that an equilibriumlike thermodynamic structure can be extended to nonequilibrium steady states having short-ranged spatial correlations, provided that the systems interact weakly to exchange mass with rates satisfying a balance condition-reminiscent of a detailed balance condition in equilibrium. The short-ranged correlations would lead to subsystem factorization on a coarse-grained level and the balance condition ensures both equalization of an intensive thermodynamic variable as well as ensemble equivalence, which are crucial for construction of a well-defined nonequilibrium thermodynamics. This proposition is proved and demonstrated in various conserved-mass transport processes having nonzero spatial correlations.
Collapse
Affiliation(s)
- Sayani Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098, India
| | - P K Mohanty
- CMP Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India
- Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
| |
Collapse
|
19
|
Chatterjee S, Pradhan P, Mohanty PK. Gammalike mass distributions and mass fluctuations in conserved-mass transport processes. PHYSICAL REVIEW LETTERS 2014; 112:030601. [PMID: 24484126 DOI: 10.1103/physrevlett.112.030601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Indexed: 06/03/2023]
Abstract
We show that, in conserved-mass transport processes, the steady-state distribution of mass in a subsystem is uniquely determined from the functional dependence of variance of the subsystem mass on its mean, provided that the joint mass distribution of subsystems is factorized in the thermodynamic limit. The factorization condition is not too restrictive as it would hold in systems with short-ranged spatial correlations. To demonstrate the result, we revisit a broad class of mass transport models and its generic variants, and show that the variance of the subsystem mass in these models is proportional to the square of its mean. This particular functional form of the variance constrains the subsystem mass distribution to be a gamma distribution irrespective of the dynamical rules.
Collapse
Affiliation(s)
- Sayani Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098, India
| | - P K Mohanty
- CMP Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India
| |
Collapse
|
20
|
Pradhan P, Seifert U. Thermodynamic theory of phase transitions in driven lattice gases. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051130. [PMID: 22181391 DOI: 10.1103/physreve.84.051130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/18/2011] [Indexed: 05/31/2023]
Abstract
We formulate an approximate thermodynamic theory of the phase transition in driven lattice gases with attractive nearest-neighbor interactions. We construct the van der Waals equation of state for a driven system where a nonequilibrium chemical potential can be expressed as a function of density and driving field. A Maxwell's construction leads to the phase transition from a homogeneous fluid phase to the coexisting phases of gas and liquid.
Collapse
Affiliation(s)
- Punyabrata Pradhan
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart D-70550, Germany
| | | |
Collapse
|
21
|
Pradhan P, Ramsperger R, Seifert U. Approximate thermodynamic structure for driven lattice gases in contact. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041104. [PMID: 22181084 DOI: 10.1103/physreve.84.041104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Indexed: 05/31/2023]
Abstract
For a class of nonequilibrium systems, called driven lattice gases, we study what happens when two systems are kept in contact and allowed to exchange particles with the total number of particles conserved. For both attractive and repulsive nearest-neighbor interactions among particles and for a wide range of parameter values, we find that, to a good approximation, one could define an intensive thermodynamic variable, such as the equilibrium chemical potential, that determines the final steady state for two initially separated driven lattice gases brought into contact. However, due to nontrivial contact dynamics, there are also observable deviations from this simple thermodynamic law. To illustrate the role of the contact dynamics, we study a variant of the zero-range process and discuss how the deviations could be explained by a modified large-deviation principle. We identify an additional contribution to the large-deviation function, which we call the excess chemical potential, for the variant of the zero-range process as well as the driven lattice gases. The excess chemical potential depends on the specifics of the contact dynamics and is in general a priori unknown. A contact dependence implies that, even though an intensive variable may equalize, the zeroth law could still be violated.
Collapse
Affiliation(s)
- Punyabrata Pradhan
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart D-70550, Germany
| | | | | |
Collapse
|
22
|
Pradhan P, Amann CP, Seifert U. Nonequilibrium steady states in contact: approximate thermodynamic structure and zeroth law for driven lattice gases. PHYSICAL REVIEW LETTERS 2010; 105:150601. [PMID: 21230880 DOI: 10.1103/physrevlett.105.150601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 09/03/2010] [Indexed: 05/30/2023]
Abstract
We explore driven lattice gases for the existence of an intensive thermodynamic variable which could determine "equilibration" between two nonequilibrium steady-state systems kept in weak contact. In simulations, we find that these systems satisfy surprisingly simple thermodynamic laws, such as the zeroth law and the fluctuation-response relation between the particle-number fluctuation and the corresponding susceptibility remarkably well. However, at higher densities, small but observable deviations from these laws occur due to nontrivial contact dynamics and the presence of long-range spatial correlations.
Collapse
Affiliation(s)
- Punyabrata Pradhan
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart 70550, Germany
| | | | | |
Collapse
|
23
|
Martens K, Bertin E, Droz M. Entropy-based characterizations of the observable dependence of the fluctuation-dissipation temperature. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:061107. [PMID: 20866378 DOI: 10.1103/physreve.81.061107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Indexed: 05/29/2023]
Abstract
The definition of a nonequilibrium temperature through generalized fluctuation-dissipation relations relies on the independence of the fluctuation-dissipation temperature from the observable considered. We argue that this observable independence is deeply related to the uniformity of the phase-space probability distribution on the hypersurfaces of constant energy. This property is shown explicitly on three different stochastic models, where observable dependence of the fluctuation-dissipation temperature arises only when the uniformity of the phase-space distribution is broken. The first model is an energy transport model on a ring, with biased local transfer rules. In the second model, defined on a fully connected geometry, energy is exchanged with two heat baths at different temperatures, breaking the uniformity of the phase-space distribution. Finally, in the last model, the system is connected to a zero temperature reservoir, and preserves the uniformity of the phase-space distribution in the relaxation regime, leading to an observable-independent temperature.
Collapse
Affiliation(s)
- Kirsten Martens
- Université de Lyon, Université Lyon 1, Laboratoire de Physique de la Matière Condensée et des Nanostructures, CNRS, UMR 5586, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
24
|
Martens K, Bertin E, Droz M. Dependence of the fluctuation-dissipation temperature on the choice of observable. PHYSICAL REVIEW LETTERS 2009; 103:260602. [PMID: 20366301 DOI: 10.1103/physrevlett.103.260602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/06/2009] [Indexed: 05/29/2023]
Abstract
On general grounds, a nonequilibrium temperature can be consistently defined from generalized fluctuation-dissipation relations only if it is independent of the observable considered. We argue that the dependence on the choice of observable generically occurs when the phase-space probability distribution is nonuniform on constant energy shells. We relate quantitatively this observable dependence to a fundamental characteristics of nonequilibrium systems, namely, the Shannon entropy difference with respect to the equilibrium state with the same energy. This relation is illustrated on a mean-field model in contact with two heat baths at different temperatures.
Collapse
Affiliation(s)
- Kirsten Martens
- Department of Theoretical Physics, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
25
|
Bi D, Chakraborty B. Rheology of granular materials: dynamics in a stress landscape. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:5073-5090. [PMID: 19933128 DOI: 10.1098/rsta.2009.0193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a framework for analysing the rheology of dense driven granular materials, based on a recent proposal of a stress-based ensemble. In this ensemble, fluctuations in a granular system near jamming are controlled by a temperature-like parameter, the angoricity, which is conjugate to the stress of the system. In this paper, we develop a model for slowly driven granular materials based on the stress ensemble and the idea of a landscape in stress space. The idea of an activated process driven by the angoricity has been shown by Behringer et al. (Behringer et al. 2008 Phys. Rev. Lett. 101, 268301) to describe the logarithmic strengthening of granular materials. Just as in the soft glassy rheology (SGR) picture, our model represents the evolution of a small patch of granular material (a mesoscopic region) in a stress-based trap landscape. The angoricity plays the role of the fluctuation temperature in the SGR. We determine (i) the constitutive equation, (ii) the yield stress, and (iii) the distribution of stress dissipated during granular shearing experiments, and compare these predictions with the experiments of Hartley & Behringer (Hartley & Behringer 2003 Nature 421, 928-931.).
Collapse
Affiliation(s)
- Dapeng Bi
- Department of Physics, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
26
|
|
27
|
Shokef Y, Shulkind G, Levine D. Isolated nonequilibrium systems in contact. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:030101. [PMID: 17930185 DOI: 10.1103/physreve.76.030101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Indexed: 05/25/2023]
Abstract
We investigate a solvable model for energy-conserving nonequilibrium steady states. The time-reversal asymmetry of the dynamics leads to the violation of detailed balance and to ergodicity breaking, as manifested by the presence of dynamically inaccessible states. Two such systems in contact do not reach the same effective temperature if standard definitions are used. However, we identify the effective temperature that controls energy flow. Although this operational temperature does reach a common value upon contact, the total entropy of the joint system can decrease.
Collapse
Affiliation(s)
- Yair Shokef
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
28
|
Henkes S, O'Hern CS, Chakraborty B. Entropy and temperature of a static granular assembly: an ab initio approach. PHYSICAL REVIEW LETTERS 2007; 99:038002. [PMID: 17678329 DOI: 10.1103/physrevlett.99.038002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/25/2007] [Indexed: 05/16/2023]
Abstract
We construct a statistical framework for static assemblies of deformable grains which parallels that of equilibrium statistical mechanics but with a conservation principle based on the mechanical stress tensor. We define a state function that has all the attributes of entropy. In particular, maximizing this function leads to a well-defined granular temperature and the equivalent of the Boltzman distribution for ensembles of grain packings. Predictions of the ensemble are verified against simulated packings of frictionless, deformable disks.
Collapse
Affiliation(s)
- Silke Henkes
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | |
Collapse
|
29
|
Bertin E, Martens K, Dauchot O, Droz M. Intensive thermodynamic parameters in nonequilibrium systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:031120. [PMID: 17500681 DOI: 10.1103/physreve.75.031120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Indexed: 05/15/2023]
Abstract
Considering a broad class of steady-state nonequilibrium systems for which some additive quantities are conserved by the dynamics, we introduce from a statistical approach intensive thermodynamic parameters (ITPs) conjugated to the conserved quantities. This definition does not require any detailed balance relation to be fulfilled. Rather, the system must satisfy a general additivity property, which holds in most of the models usually considered in the literature, including those described by a matrix product ansatz with finite matrices. The main property of these ITPs is to take equal values in two subsystems, making them a powerful tool to describe nonequilibrium phase coexistence, as illustrated on different models. We finally discuss the issue of the equalization of ITPs when two different systems are put into contact. This issue is closely related to the possibility of measuring the ITPs using a small auxiliary system, in the same way as temperature is measured with a thermometer, and points at one of the major difficulties of nonequilibrium statistical mechanics. In addition, an efficient alternative determination, based on the measure of fluctuations, is also proposed and illustrated.
Collapse
Affiliation(s)
- Eric Bertin
- Department of Theoretical Physics, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|