1
|
Wu T, Wang Z, Yin F, Wang W, Yi Z. Isoporous Membranes by the Symmetric Triblock Copolymer: A Strategy to Improve the Mechanical Strength without Sharply Changing the Pore Size and Permselectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37073-37086. [PMID: 38958638 DOI: 10.1021/acsami.4c07113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Isoporous membranes produced from diblock copolymers commonly display a poor mechanical property that shows many negative impacts on their separation application. It is theoretically predicted that dense films produced from symmetric triblock copolymers show much stronger mechanical properties than those of homologous diblock copolymers. However, to the best of our knowledge, symmetric triblock copolymers have rarely been fabricated into isoporous membranes before, and a full understanding of separation as well as mechanical properties of membranes prepared from triblock copolymers and homologous diblock copolymers has not been conducted, either. In this work, a cleavable symmetric triblock copolymer with polystyrene as the side block and poly(4-vinylpyridine) (P4VP) as the middle block was synthesized and designed by the RAFT polymerization using the symmetric chain transfer agent, which located at the center of polymer chains and could be removed to produce homologous diblock copolymers with half-length while having the same composition as that found in triblock copolymers. The self-assembly of these two copolymers in thin films and casting solutions was first investigated, observing that they displayed similar self-organized structures under these two conditions. When fabricated into isoporous membranes, they showed similar pore sizes (5-7% difference) and comparable rejection performance (∼10% difference). However, isoporous membranes produced from triblock copolymers showed significantly improved mechanical strength and higher toughness (2-10 times larger) as evidenced by the compacting resistance, strain-stress determination, and nanoindentation testing, suggesting the unique and novel structure-performance relationship in the isoporous membranes produced from symmetric triblock copolymers. The above finding will guide the way to fabricate mechanically robust isoporous membranes without notably changing the separation performance from rarely used symmetric triblock copolymers, which can be synthesized by the controlled polymerization as facilely as that found for diblock copolymers.
Collapse
Affiliation(s)
- Tao Wu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| | - Zixiong Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengjie Yin
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenjing Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhuan Yi
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| |
Collapse
|
2
|
Ma L, Duan R, Cao G, Bahetihan H, Kong W. Core-shell particle formation via Co-assembly of AB diblock copolymers and nanoparticles in 3D soft confinement. RSC Adv 2024; 14:22449-22458. [PMID: 39010905 PMCID: PMC11248566 DOI: 10.1039/d4ra02223h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024] Open
Abstract
Core-shell particle formation via co-assembly of AB diblock copolymers and nanoparticles in 3D soft confinement was studied using a simulated annealing method. Several sequences of soft confinement-induced core-shell particles were predicted as functions of the volume fraction of the nanoparticle to core-shell particles, the incompatibility between blocks, the volume fractions of A-blocks, the chain length of AB diblocks, the eccentricity of the nanoparticle, and the initial concentration of copolymers. Simulation results demonstrate that those factors are able to tune the morphology of the core-shell particles precisely. Calculated data indicate that the copolymer chain was located between a hard confinement wall composed of the nanoparticle and a soft confinement wall composed of solvents, and the arrangement direction of the copolymer chains was in a competitive equilibrium between the two. We anticipate that this work will be helpful and instructive for the preparation of polymer shells with different structures and shapes, as well as the study of self-assembly morphology of copolymers in a complex confinement systems.
Collapse
Affiliation(s)
- Liangjun Ma
- Department of Physics, University of Xinjiang Urumqi CN China
| | - Runyu Duan
- Department of Physics, University of Xinjiang Urumqi CN China
| | - Ganghui Cao
- Department of Physics, University of Xinjiang Urumqi CN China
| | | | - Weixin Kong
- Department of Physics, University of Xinjiang Urumqi CN China
| |
Collapse
|
3
|
Ma L, Bahetihan H, Kong W. Shell with Striped, Helical, and Bipolar Lamellae Structures from Soft Confinement-Induced Self-Assembly of AB Diblock Copolymers on a Nanocylinder. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13699-13708. [PMID: 38952281 DOI: 10.1021/acs.langmuir.4c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The soft confinement-induced self-assembly of AB diblock copolymers on a nanocylinder is studied via a simulated annealing method. The formation of multiple copolymer shells was predicted by varying the interfacial interaction, the size of confinement, and the height and diameter of the nanocylinder. The competition between solvent repulsion and nanocylinder attraction determined the degree of encapsulation of the copolymer shell. The formation of a helical copolymer shell was induced by the maximization of conformational entropy. The preferential distribution position of copolymers on anisotropic nanocylinder surfaces was induced by interfacial energy minimization. Our study contributes to the understanding of the formation mechanism of the helical structure in block copolymer aggregates and the fabrication of copolymer shells with predesigned morphologies.
Collapse
Affiliation(s)
- Liangjun Ma
- Department of Physics, University of Xinjiang, Urumqi 830046, China
| | | | - Weixin Kong
- Department of Physics, University of Xinjiang, Urumqi 830046, China
| |
Collapse
|
4
|
Singh J, Gupta S, Chokshi P. Confinement-induced self-assembly of a diblock copolymer within a non-uniform cylindrical nanopore. SOFT MATTER 2024; 20:1543-1553. [PMID: 38268494 DOI: 10.1039/d3sm01348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The self-assembly of a diblock copolymer melt confined within a non-uniform cylindrical nanopore is studied using the self-consistent field theory. The non-uniformity manifests in the form of a converging-diverging cylindrical nanopore. The axial variation in pore diameter presents a range of curvatures within the same confinement pore as opposed to a single curvature in a uniform-diameter cylindrical pore. The introduction of multiple curvatures leads to the formation of novel microstructures not accessible in uniform cylindrical confinement. The well-known equilibrium structures like a single helix, double helices, and concentric lamella under cylindrical confinement transition into new morphologies such as hyperboloidal phases, microstructures containing rings with a bead, rings with spheres, and a squeezed helical phase as the pore diameter varies axially. The converging-diverging geometry of the confining pore renders the helical phases seen in the cylindrical pore less favorable. A phase diagram in the parametric space of the block fraction and the ratio of the smallest and largest pore radii has been constructed to depict the order-order transition of various microstructures. The ratio of radii, a measure of the non-uniformity of the pore, along with the pore length brings out some interesting morphologies. The mechanism of these structural transitions is understood as the interplay between the variation in pore curvature attributed to the non-uniformity, the spontaneous curvature of the block copolymer interface, and the enthalpic interaction between the segregated blocks.
Collapse
Affiliation(s)
- Jagat Singh
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| | - Supriya Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| | - Paresh Chokshi
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| |
Collapse
|
5
|
Li N, Li J, Qing L, Ma S, Li Y, Li B. Self-assembly of colloids with competing interactions confined in spheres. SOFT MATTER 2024; 20:304-314. [PMID: 38050746 DOI: 10.1039/d3sm01227a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
At low temperatures, colloidal particles with short-range attractive and long-range repulsive interactions can form various periodic microphases in bulk. In this paper, we investigate the self-assembly behaviour of colloids with competing interactions under spherical confinement by conducting molecular dynamics simulations. We find that the cluster, mixture, cylindrical, perforated lamellar and lamellar structures can be obtained, but the details of the ordered structures are different from those in bulk systems. Interestingly, the system tends to form more perforated structures when confined in smaller spheres. The mechanism behind this phenomenon is driven by the relationship between the energy of the ordered structures and the bending of the confinement wall, which is different from the mechanism in copolymer systems.
Collapse
Affiliation(s)
- Ningyi Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Junhong Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Lijingting Qing
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Shicheng Ma
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Yao Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Baohui Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| |
Collapse
|
6
|
Zhang X, Dai X, Gao L, Xu D, Wan H, Wang Y, Yan LT. The entropy-controlled strategy in self-assembling systems. Chem Soc Rev 2023; 52:6806-6837. [PMID: 37743794 DOI: 10.1039/d3cs00347g] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.
Collapse
Affiliation(s)
- Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Zhang H, Pan F, Li S. Self-Assembly of Lipid Molecules under Shear Flows: A Dissipative Particle Dynamics Simulation Study. Biomolecules 2023; 13:1359. [PMID: 37759759 PMCID: PMC10526246 DOI: 10.3390/biom13091359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The self-assembly of lipid molecules in aqueous solution under shear flows was investigated using the dissipative particle dynamics simulation method. Three cases were considered: zero shear flow, weak shear flow and strong shear flow. Various self-assembled structures, such as double layers, perforated double layers, hierarchical discs, micelles, and vesicles, were observed. The self-assembly behavior was investigated in equilibrium by constructing phase diagrams based on chain lengths. Results showed the remarkable influence of chain length, shear flow and solution concentration on the self-assembly process. Furthermore, the self-assembly behavior of lipid molecules was analyzed using the system energy, particle number and shape factor during the dynamic processes, where the self-assembly pathways were observed and analyzed for the typical structures. The results enhance our understanding of biomacromolecule self-assembly in a solution and hold the potential for applications in biomedicine.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Fan Pan
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
8
|
Zhao B, Dong Q, Yang W, Xu Y. Theoretical Study of Phase Behaviors of Symmetric Linear B 1A 1B 2A 2B 3 Pentablock Copolymer. Molecules 2023; 28:molecules28083536. [PMID: 37110770 PMCID: PMC10146716 DOI: 10.3390/molecules28083536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The nanostructures that are self-assembled from block copolymer systems have attracted interest. Generally, it is believed that the dominating stable spherical phase is body-centered cubic (BCC) in linear AB-type block copolymer systems. The question of how to obtain spherical phases with other arrangements, such as the face-centered cubic (FCC) phase, has become a very interesting scientific problem. In this work, the phase behaviors of a symmetric linear B1A1B2A2B3 (fA1 = fA2, fB1 = fB3) pentablock copolymer are studied using the self-consistent field theory (SCFT), from which the influence of the relative length of the bridging B2-block on the formation of ordered nanostructures is revealed. By calculating the free energy of the candidate ordered phases, we determine that the stability regime of the BCC phase can be replaced by the FCC phase completely by tuning the length ratio of the middle bridging B2-block, demonstrating the key role of B2-block in stabilizing the spherical packing phase. More interestingly, the unusual phase transitions between the BCC and FCC spherical phases, i.e., BCC → FCC → BCC → FCC → BCC, are observed as the length of the bridging B2-block increases. Even though the topology of the phase diagrams is less affected, the phase windows of the several ordered nanostructures are dramatically changed. Specifically, the changing of the bridging B2-block can significantly adjust the asymmetrical phase regime of the Fddd network phase.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Qingshu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Wei Yang
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Yuci Xu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Juan YT, Lai YF, Li X, Tai TC, Lin CH, Huang CF, Li B, Shi AC, Hsueh HY. Self-Assembly of Gyroid-Forming Diblock Copolymers under Spherical Confinement. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yen-Ting Juan
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Yu-Fang Lai
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Xingye Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Tsung-Cheng Tai
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Ching-Hsun Lin
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Baohui Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton Ontario L8S 4M1, Canada
| | - Han-Yu Hsueh
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
10
|
Sirirak K, Vao-soongnern V. Molecular simulation of structural properties of polymer blend nanofilms. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Wu J, Wang X, Wang Z, Yin Y, Jiang R, Li Y, Li B. Nanospheres with Patches Arranged in Polyhedrons from Self-Assembly of Solution-State Diblock Copolymers under Spherical Confinement. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiaping Wu
- School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300071, China
| | - Xin Wang
- School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300071, China
| | - Zheng Wang
- School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300071, China
| | - Yuhua Yin
- School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300071, China
| | - Run Jiang
- School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300071, China
| | - Yao Li
- School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300071, China
| | - Baohui Li
- School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300071, China
| |
Collapse
|
12
|
Zhang T, Wang N, Riggleman RA. Failure and Mechanical Properties of Glassy Diblock Copolymer Thin Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tianren Zhang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Ning Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Robert A. Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
13
|
Zhang L, Yang J, Li W. Emergence of Multi-strand Helices from the Self-Assembly of AB-Type Multiblock Copolymer under Cylindrical Confinement. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lixun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Junying Yang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Effect of a confining surface on a mixture with spontaneous inhomogeneities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Xu X, Tang T, Gu M. Structural transitions in two-dimensional modulated systems under triangular confinement. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:72. [PMID: 36070024 DOI: 10.1140/epje/s10189-022-00229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
We study numerically the structural transitions of two-dimensional systems of classic particles with competing interactions under a triangular confinement with two different types of soft-wall potentials. We observe a variety of novel confinement-induced equilibrium configurations as a function of particle density and confinement steepness for each considered confinement potential. The specific role played by the confining potentials on the ordering of the particle clusters is revealed. These findings allow us to control the self-organization of modulated systems through using external confinements.
Collapse
Affiliation(s)
- Xibin Xu
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China.
| | - Tao Tang
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China
| | - Min Gu
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Modeling the Phase Equilibria of Associating Polymers in Porous Media with Respect to Chromatographic Applications. Polymers (Basel) 2022; 14:polym14153182. [PMID: 35956697 PMCID: PMC9370872 DOI: 10.3390/polym14153182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Associating copolymers self-assemble during their passage through a liquid chromatography (LC) column, and the elution differs from that of common non-associating polymers. This computational study aims at elucidating the mechanism of their unique and intricate chromatographic behavior. We focused on amphiphilic diblock copolymers in selective solvents, performed the Monte Carlo (MC) simulations of their partitioning between a bulk solvent (mobile phase) and a cylindrical pore (stationary phase), and investigated the concentration dependences of the partition coefficient and of other functions describing the phase behavior. The observed abruptly changing concentration dependences of the effective partition coefficient demonstrate the significant impact of the association of copolymers with their partitioning between the two phases. The performed simulations reveal the intricate interplay of the entropy-driven and the enthalpy-driven processes, elucidate at the molecular level how the self-assembly affects the chromatographic behavior, and provide useful hints for the analysis of experimental elution curves of associating polymers.
Collapse
|
17
|
Yang J, Dong Q, Liu M, Li W. Universality and Specificity in the Self-Assembly of Cylinder-Forming Block Copolymers under Cylindrical Confinement. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junying Yang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qingshu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Meijiao Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Zhao F, Xu Z, Li W. Self-Assembly of Asymmetric Diblock Copolymers under the Spherical Confinement. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fengmei Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhanwen Xu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Zhu G, Gao L, Xu Z, Dai X, Zhang X, Yan LT. Entropy-Driven Unconventional Crystallization of Spherical Colloidal Nanocrystals Confined in Wide Cylinders. NANO LETTERS 2021; 21:8439-8446. [PMID: 34591482 DOI: 10.1021/acs.nanolett.1c03127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The densest packings of identical spherical colloidal nanocrystals in a thin cylinder generally give rise to confinement-induced chiral ordering. Here, we demonstrate that entropy can invalidate Pauling's packing rules for the nanocrystals confined in wide cylinders and novel ordered phases, where chiral ordering is broken, emerge. The nucleation and growth of spherical colloidal nanocrystals in the wide cylinders exhibit unique mechanisms which are distinctly different from that of thin ones. Furthermore, theoretical models which capture the essential physics of the ordering transitions are developed to reproduce the achiral ordering and reveal that the ordered phases are thermodynamically stable and stabilized through confinement-mediated entropic effect. These findings demonstrate that entropy arising from thermal motion can invalidate Pauling's packing rules of spherical colloidal nanocrystals confined in cylinders, which provides new insights into confinement physics of colloidal particles and might inspire nonintuitive design rules for the fabrication of novel ordered phases through confinement.
Collapse
Affiliation(s)
- Guolong Zhu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
20
|
Vargo E, Evans KM, Wang Q, Sattler A, Qian Y, Yao J, Xu T. Orbital Angular Momentum from Self-Assembled Concentric Nanoparticle Rings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103563. [PMID: 34418190 DOI: 10.1002/adma.202103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Ring-shaped nanostructures can focus, filter, and manipulate electromagnetic waves, but are challenging to incorporate into devices using standard nanofabrication techniques. Directed self-assembly (DSA) of block copolymers (BCPs) on lithographically patterned templates has successfully been used to fabricate concentric rings and spirals as etching masks. However, this method is limited by BCP phase behavior and material selection. Here, a straightforward approach to generate ring-shaped nanoparticle assemblies in thin films of supramolecular nanocomposites is demonstrated. DSA is used to guide the formation of concentric rings with radii spanning 150-1150 nm and ring widths spanning 30-60 nm. When plasmonic nanoparticles are used, ring nanodevice arrays can be fabricated in one step, and the completed devices produce high-quality orbital angular momentum (OAM). Nanocomposite DSA simplifies and streamlines nanofabrication by producing metal structures without etching or deposition steps; it also introduces interparticle coupling as a new design axis. Detailed analysis of the nanoparticle ring assemblies confirms that the supramolecular system self-regulates the spatial distribution of its components, and thus exhibits a degree of flexibility absent in DSA of BCPs alone, where structures are determined by polymer-pattern incommensurability. The present studies also provide guidelines for developing self-regulating DSA as an alternative to incommensurability-driven methods.
Collapse
Affiliation(s)
- Emma Vargo
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Katherine M Evans
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Qingjun Wang
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Andrew Sattler
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Yiwen Qian
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Jie Yao
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ting Xu
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
21
|
Ok S, Vayer M, Sinturel C. A decade of innovation and progress in understanding the morphology and structure of heterogeneous polymers in rigid confinement. SOFT MATTER 2021; 17:7430-7458. [PMID: 34341814 DOI: 10.1039/d1sm00522g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When confined in nanoscale domains, polymers generally encounter changes in their structural, thermodynamics and dynamics properties compared to those in the bulk, due to the high amount of polymer/wall interfaces and limited amount of matter. The present review specifically deals with the confinement of heterogeneous polymers (i.e. polymer blends and block copolymers) in rigid nanoscale domains (i.e. bearing non-deformable solid walls) where the processes of phase separation and self-assembly can be deeply affected. This review focuses on the innovative contributions of the last decade (2010-2020), giving a summary of the new insights and understanding gained in this period. We conclude this review by giving our view on the most thriving directions for this topic.
Collapse
Affiliation(s)
- Salim Ok
- Petroleum Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait.
| | | | | |
Collapse
|
22
|
Park SY, Jeong HU, Lee J, Jang J, Kim S, Choi C, Kim JU, Kim JK. Graphoepitaxy of Symmetric Six-Arm Star-Shaped Poly(methyl methacrylate)-block-Polystyrene Copolymer Thin Film. Macromol Rapid Commun 2021; 42:e2100411. [PMID: 34347926 DOI: 10.1002/marc.202100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Indexed: 11/06/2022]
Abstract
The authors perform directed self-assembly based on graphoepitaxy of symmetric six-arm star-shaped poly(methyl methacrylate)-block-polystyrene copolymer [(PMMA-b-PS)6 ] thin film. The affinity between each block and the trench wall is adjusted by using polymer brushes or selective gold (Au) deposition. When the surface of the trench is strongly selective for the PMMA block, (n+0.75)L0 thick (n is the number of the lamellae, L0 is lamellar domain spacing) lamellae parallel to the trench wall are formed at each side, while nanotubes are formed away from the trench wall. However, for a trench grafted with PS brushes, nanotubes are formed beside (n+0.25)L0 thick lamellar layers. By adjusting the trench width (W) and the affinity between the block and the wall, various dual nanopatterns consisting of lines and nanotubes are fabricated. Moreover, when the trench wall is selectively deposited by Au, asymmetric dual nanopattern is formed, where different numbers of lines exist on each side wall, while nanotubes are formed in the middle of the trench. The observed morphologies depending on the commensurability condition between W and L0 are consistent with predictions by self-consistent field theory.
Collapse
Affiliation(s)
- So Yeong Park
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyeon U Jeong
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Junho Jang
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sanghoon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chungryong Choi
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaeup U Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
23
|
Chen K, Wang F, Liu M, Wang X. Tunable helical structures formed by blending
ABC
triblock copolymers and C homopolymers in nanopores. POLYM INT 2021. [DOI: 10.1002/pi.6253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ka Chen
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| | - Feng Wang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| | - Meijiao Liu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
24
|
Shi AC. Frustration in block copolymer assemblies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:253001. [PMID: 33862614 DOI: 10.1088/1361-648x/abf8d0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Frustration is ubiquitous in condensed matter systems and it provides a central concept to understand the self-assembly of soft matter. Frustration is found at multiple scales in polymeric systems containing block copolymers. At the molecular scale, frustration arises because the chemically distinct blocks repel each other whereas the chain connectivity prevents a macroscopic separation. At the mesoscopic scale, frustration occurs due to the competition between the tendency for the block copolymer assemblies to maintain their native shape and the requirement to fill the space. At an even larger scale, frustrations could be induced by external fields or spatial confinement. Recent theoretical and experimental studies provide a good understanding of the origin of various frustrations in the self-assembly of block copolymers. Furthermore, it has been demonstrated that designed block copolymer systems, either in the form of multiblock copolymers with different architectures or block copolymer blends, could be utilized to regulate frustrations resulting in the formation of complex ordered and hierarchically structured phases.
Collapse
Affiliation(s)
- An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
| |
Collapse
|
25
|
Gupta S, Chokshi P. Self-organization of a 4-miktoarm star block copolymer induced by cylindrical confinement. SOFT MATTER 2021; 17:4929-4941. [PMID: 33725050 DOI: 10.1039/d1sm00149c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-consistent field calculations have been carried out to reveal the self-assembly behavior of a melt of the ABCD star tetrablock copolymer confined within a cylindrical nanopore. The miktoarm star block copolymer exhibits a rich self-assembly behavior with a myriad of interesting three-dimensional ordered phases with the potential to produce advanced nanomaterials. The broad array of ordered mesophases includes helical microstructures, stack of rings/doughnuts, honeycomb structure, and perforated lamella with beads, depending on the individual block fractions and the size of the cylindrical nanopore. Such chiral motifs generated from achiral polymeric molecules are fascinating due to their superior performance in sophisticated opto-electronic devices. The study also demonstrates an interesting morphology, viz. a honeycomb structure, obtained from the self-organization of ABCD star block copolymer molecules with equal block fractions. The system exhibits order-order phase transition covering a range of ordered morphologies by changing either the block fraction or the nanopore radius. A representative phase diagram in terms of block fractions is constructed. These novel ordered microstructures, arising mainly out of structural frustration and confinement-induced entropy loss, can serve as structural scaffolds to host the spatial distribution of nanoparticles resulting into novel nanocomposites with significantly enhanced as well as controllable properties.
Collapse
Affiliation(s)
- Supriya Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| | - Paresh Chokshi
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| |
Collapse
|
26
|
Self-assembly of A1B1A2(B2) branched tetrablock copolymer: Length scale and phase transition. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Hu X, Wang Z, Yin Y, Jiang R, Li B. Controlling the chirality and number of strands of helices self-assembled from achiral block copolymers confined inside a nanopore: a simulation study. SOFT MATTER 2021; 17:4434-4444. [PMID: 33908596 DOI: 10.1039/d1sm00103e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achiral block copolymers can self-assemble into helical structures when confined inside a cylindrical nanopore. However, controlling the chirality and the number of strands of helices is challenging. We present our simulation results of the influence of a chiral patch added to the confining nanopore on the structures and chirality of helices self-assembled from achiral cylinder-forming diblock copolymers under the confinement. Our results indicate that, when the designed patch is of proper geometry, it can induce the formation of helical structures and exhibit good control over their chirality. The bottom surface of the patch can induce the formation of a characteristic local structure near and parallel to it. It is the characteristic local structure that directs the formation of helices and of their chirality consistent with that of the patch. A large patch angle or the top/bottom surface of a weakly selective pore promotes the formation of double-helices compared to single-helices by enlarging the pitch of the helices near the patch or through the entropic attraction of the top surface of the pore to the minority blocks.
Collapse
Affiliation(s)
- Xiejun Hu
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| | - Zheng Wang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| | - Yuhua Yin
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| | - Run Jiang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| | - Baohui Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
28
|
Wang J, Liu L, Yan G, Li Y, Gao Y, Tian Y, Jiang L. Ionic Transport and Robust Switching Properties of the Confined Self-Assembled Block Copolymer/Homopolymer in Asymmetric Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14507-14517. [PMID: 33733727 DOI: 10.1021/acsami.1c01682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The self-assembly of block copolymers in a confined space has been proven to be a facile and robust strategy for fabricating assembled structures with various potential applications. Herein, we employed a new pH-responsive polymer self-assembly method to regulate ion transport inside artificial nanochannels. The track-etched asymmetric nanochannels were functionalized with PS22k-b-P4VP17k/hPS4k blend polymers, and the ionic conductance and rectification properties of the proposed system were investigated. The pH-actuated changes in the surface charge and wettability resulted in the selective pH-gated ionic transport behavior. The designed system showed a good switching property to the pH stimulus and could recover during the repetitive experiments. The gating ability of the polymer-nanochannel system increased with increasing the weight of the homopolymer, and the proposed platform demonstrated robust stability and reusability. Numerical and the dissipative particle dynamics simulations were implemented to emulate the pH-dependent self-assembling behavior of diblock copolymers in a confined space, which were consistent with the experimental observations. As an example of the self-assembly of polymers in nanoconfinements, this work provides a facile and robust strategy for the regulation of ion transport in synthetic nanochannels. Meanwhile, this work can be further extended to design artificial smart nanogates for various applications such as mass delivery and energy harvesting.
Collapse
Affiliation(s)
- Jian Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Lang Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Guilong Yan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yanchun Li
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Yang Gao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, People's Republic of China
| | - Ye Tian
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, People's Republic of China
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
29
|
Ko J, Berger R, Lee H, Yoon H, Cho J, Char K. Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chem Soc Rev 2021; 50:3585-3628. [DOI: 10.1039/d0cs01501f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides a comprehensive overview of the electronic effects of nano-confinement (from 1D to 3D geometries) on optoelectronic materials and their applications.
Collapse
Affiliation(s)
- Jongkuk Ko
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Republic of Korea
- School of Chemical & Biological Engineering
| | - Rüdiger Berger
- Physics at Interfaces
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
| | - Hyemin Lee
- Department of Chemical & Biomolecular Engineering
- Seoul National University of Science & Technology
- Seoul 01811
- Republic of Korea
| | - Hyunsik Yoon
- Department of Chemical & Biomolecular Engineering
- Seoul National University of Science & Technology
- Seoul 01811
- Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology
| | - Kookheon Char
- School of Chemical & Biological Engineering
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
30
|
Gu X, Li W. Impact of Thin-Film Confinement on the Packing of Low-Coordinate Spheres in Bulk. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xueying Gu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 2004338, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 2004338, China
| |
Collapse
|
31
|
Tang Z, Xu Z, Cai C, Lin J, Yao Y, Yang C, Tian X. 2D Chiral Stripe Nanopatterns Self-Assembled from Rod-Coil Block Copolymers on Microstripes. Macromol Rapid Commun 2020; 41:e2000349. [PMID: 32830421 DOI: 10.1002/marc.202000349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Chiral nanoarchitectures usually possess unique and intriguing properties. However, the construction of 2D chiral nanopatterns through polymer self-assembly is a challenge. Reported herein is the formation of chiral stripe nanopatterns through surface self-assembly of polypeptide-based rod-coil block copolymers on microstripes. The nanostripes align oblique to the boundary of the microstripes, resulting in the chirality of the nanopatterns. The chirality of the nanopatterns is closely related to the width of the microstripes, i.e., a narrower width results in higher chirality. Besides, the chiral sense of the nanopatterns can be regulated by the chirality of the polypeptide blocks. This work demonstrates the transmission of chirality from polymer to nanoarchitecture on a confined surface, which can guide the preparation of nanopatterns with tuned chiral features.
Collapse
Affiliation(s)
- Zhengmin Tang
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhanwen Xu
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunhua Cai
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaping Lin
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuan Yao
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiaohui Tian
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
32
|
Xie Q, Qiang Y, Zhang G, Li W. Emergence and Stability of Janus-Like Superstructures in an ABCA Linear Tetrablock Copolymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiong Xie
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yicheng Qiang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guojie Zhang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Bildanau E, Pękalski J, Vikhrenko V, Ciach A. Adsorption anomalies in a two-dimensional model of cluster-forming systems. Phys Rev E 2020; 101:012801. [PMID: 32069566 DOI: 10.1103/physreve.101.012801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Adsorption on a boundary line confining a monolayer of particles self-assembling into clusters is studied by Monte Carlo simulations. We focus on a system of particles interacting via competing interaction potential in which effectively short-range attraction is followed by long-range repulsion. For the chemical potential values below the order-disorder phase transition the adsorption isotherms were shown to undergo nonstandard behavior, i.e., the adsorption exhibits a maximum on structural transition between structureless and disordered cluster fluid. In particular, we have found that the adsorption decreases for increasing chemical potential when (i) clusters dominate over monomers in the bulk, (ii) the density profile in the direction perpendicular to the confining line exhibits an oscillatory decay, and (iii) the correlation function in the layer near the adsorption wall exhibits an oscillatory decay in the direction parallel to this wall. Our report indicates striking differences between simple and complex fluid adsorption processes.
Collapse
Affiliation(s)
- E Bildanau
- Belarusian State Technological University, 220006 Minsk, Belarus
| | - J Pękalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland and Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - V Vikhrenko
- Belarusian State Technological University, 220006 Minsk, Belarus
| | - A Ciach
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
34
|
Yue X, Geng Z, Yan N, Jiang W. Hierarchical self-assembly of a PS-b-P4VP/PS-b-PNIPAM mixture into multicompartment micelles and their response to two-dimensional confinement. Phys Chem Chem Phys 2020; 22:1194-1203. [DOI: 10.1039/c9cp05180e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Finely tuned synergistic effects among different blocks could realize intriguing hierarchical self-assembly of block copolymers and such hierarchical self-assembly could be manipulated by cylindrical confinement to tune the structures of assemblies.
Collapse
Affiliation(s)
- Xuan Yue
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zhen Geng
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Nan Yan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
35
|
Jiang Y, Qian M, Xu Y. Influence of Branches on the Phase Behavior of (AB) f Starlike Block Copolymer under Cylindrical Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16813-16820. [PMID: 31789525 DOI: 10.1021/acs.langmuir.9b02740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Experimentally, self-assembled morphologies of the (AB)f starlike block copolymer are strongly dependent on the number of arms, f. For example, the 2- and 4-arm starlike block copolymers exhibited the morphologies of hexagonally arrayed polystyrene cylinder in the polyisoprene matrix while order-bicontinuous nanostructures were observed in 8-, 12-, and 18-arm stars. Theoretically, we found that the transition sequence for (AB)3 is C1B → DkB → P2B → L2B, which becomes C1B → L1B when f > 6. To explore the influence of f on the phase behavior of (AB)f under cylindrical confinement, we calculated the two-dimensional phase diagram with respect to the volume fraction and the pore diameter. Our conclusions show that the topologies of the phase diagram are independent of the number of arms; however, the number of arms does affect the phase boundary, which inevitably leads to the different phase transition sequences at fixed volume fraction. Therefore, from the calculated phase diagram, the influence of f on the phase behavior of the starlike copolymer is fully understood.
Collapse
Affiliation(s)
- Yangyang Jiang
- Faculty of Materials Science and Chemical Engineering , Ningbo University , 818 Fenghua Road , Ningbo , Zhejiang 315211 , China
| | - Mingshuang Qian
- Faculty of Materials Science and Chemical Engineering , Ningbo University , 818 Fenghua Road , Ningbo , Zhejiang 315211 , China
| | - Yuci Xu
- Faculty of Materials Science and Chemical Engineering , Ningbo University , 818 Fenghua Road , Ningbo , Zhejiang 315211 , China
| |
Collapse
|
36
|
Liu M, Chen K, Li W, Wang X. Tunable helical structures formed by ABC triblock copolymers under cylindrical confinement. Phys Chem Chem Phys 2019; 21:26333-26341. [PMID: 31782439 DOI: 10.1039/c9cp04978a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Block copolymers confined in nanopores provide unique achiral systems for the formation of helical structures. With AB diblock copolymers, stable single and double helical structures are observed. Aiming to obtain more different helical structures, we replace the AB diblock copolymer with linear ABC triblock copolymers. We speculate that a core-shell superstructure is formed within the nanopore, which is composed of a C-core cylinder wrapped by B-helices within the A-shell. Accordingly, the pore surface is set to be most attractive to the majority A-block and a typical set of interaction parameters is chosen as χACN ≪ χABN = χBCN = 80 to generate the frustrated interfaces. Furthermore, the volume fraction of B-block is fixed as fB = 0.1 to form helical cylinders. A number of helical structures with strands ranging from 1 to 5 are predicted by self-consistent field theory, and in general, the number of strands decreases as the volume fraction of C-block fC increases in a given nanopore. More surprisingly, the variation of helical strand in the confined system has an opposite trend to that in the bulk, which mainly results from the constraint of the cylindrical confinement on the change of the curvature between the outer A-layer and the inner B/C-superdomain. Our work demonstrates a facile way to fabricate different helical superstructures.
Collapse
Affiliation(s)
- Meijiao Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | | | | | | |
Collapse
|
37
|
Ha MY, Ryu JH, Cho EN, Choi J, Kim Y, Lee WB. Phase behavior of disk-coil block copolymers under cylindrical confinement: Curvature-induced structural frustrations. Phys Rev E 2019; 100:052502. [PMID: 31869916 DOI: 10.1103/physreve.100.052502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we explore the self-assembly behavior of disk-coil block copolymers (BCPs) confined within a cylinder using molecular dynamics simulations. As functions of the diameter of the confining cylinder and the number of coil beads, concentric lamellar structures are obtained with a different number of alternating disk-rich and coil-rich bilayers. Our paper focuses on the curvature-induced structural behavior in the disk-rich domain of a self-assembled structure, which is investigated by calculating the local density distribution P(r) and the orientational distribution G(r,θ). In the inner layers of cylinder-confined disk-coil BCPs, both P(r) and G(r,θ) show characteristic asymmetry within a bilayer which is directly contrasted with the bulk and slab-confined disk-coil BCPs. We successfully explain the structural frustration of disks arising from the curved structure due to packing frustration of disks and asymmetric stretching of coils to the regions with different curvatures in a bilayer. Our results are important to understand the self-assembly behavior of BCPs containing a rigid motif in a confined structure, such as a self-assembled structure of bacteriochlorophyll molecules confined by a lipid layer to form a chlorosome, the photosynthetic antennae complex found in nature.
Collapse
Affiliation(s)
- Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Ho Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Eugene N Cho
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junwon Choi
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Bio-Med Division, KIST-School UST, Seoul 02792, Republic of Korea
| | - YongJoo Kim
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Qavi S, Bandegi A, Firestone M, Foudazi R. Polymerization in soft nanoconfinement of lamellar and reverse hexagonal mesophases. SOFT MATTER 2019; 15:8238-8250. [PMID: 31576891 DOI: 10.1039/c9sm01565e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work describes the kinetics of thermal polymerization in nanoconfined domains of lyotropic liquid crystal (LLC) templates by using chemorheological studies at different temperatures. We investigate lamellar and reverse hexagonal LLC phases with the same concentration of the monomeric phase. Results show that the mesophase structures remain intact during thermal polymerization with very slight changes in the domain size. The polymerization rate decreases in the nanoconfined structure compared to the bulk state due to the segregation effect, which increases the local monomer concentration and enhances the termination rate. Additionally, the polymerization rate is faster in the studied reverse hexagonal systems compared to the lamellar ones due to their lower degree of confinement. A higher degree of confinement also induces a lower monomer conversion. Differential scanning calorimetry confirms the obtained results from chemorheology.
Collapse
Affiliation(s)
- Sahar Qavi
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | | | | |
Collapse
|
39
|
Lin YL, Cheng MH, Chang CW, Chu CW, Liu CT, Chen JT. Curved block copolymer nanodiscs: structure transformations in cylindrical nanopores using the nonsolvent-assisted template wetting method. SOFT MATTER 2019; 15:8201-8209. [PMID: 31588459 DOI: 10.1039/c9sm01633c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we study the structure transformations of cylinder-forming polystyrene-block-polydimethylsiloxane (PS31k-b-PDMS14.5k) confined in cylindrical nanopores. PS-b-PDMS nanotubes, nanospheres, and curved nanodiscs are ingeniously prepared by a facile template wetting strategy using anodic aluminum oxide (AAO) templates. Quantitative analyses of the structure transformations from nanospheres to curved nanodiscs are also conducted, showing that the lengths of the curved nanodiscs can be controlled by adjusting the annealing temperature and time. Furthermore, the PDMS domains of the nanostructures can be selectively etched using HF solutions, generating porous PS nanostructures. This work not only offers versatile routes to prepare block copolymer nanostructures with controlled shapes but also provides a deeper understanding of the structure transformation of block copolymers in confined geometries.
Collapse
Affiliation(s)
- Yu-Liang Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Gil Haenelt T, Meyer A, Abetz C, Abetz V. Planet‐Like Nanostructures Formed by an ABC Triblock Terpolymer. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taida Gil Haenelt
- Institute of Physical ChemistryUniversity of Hamburg Martin‐Luther‐King‐Platz 6 20146 Hamburg Germany
| | - Andreas Meyer
- Institute of Physical ChemistryUniversity of Hamburg Martin‐Luther‐King‐Platz 6 20146 Hamburg Germany
| | - Clarissa Abetz
- Helmholtz‐Zentrum GeesthachtInstitute of Polymer Research Max‐Planck‐Strasse 1 21502 Geesthacht Germany
| | - Volker Abetz
- Institute of Physical ChemistryUniversity of Hamburg Martin‐Luther‐King‐Platz 6 20146 Hamburg Germany
- Helmholtz‐Zentrum GeesthachtInstitute of Polymer Research Max‐Planck‐Strasse 1 21502 Geesthacht Germany
| |
Collapse
|
41
|
Shao Z, Zhang D, Hu W, Xu Y, Li W. Transition mechanisms of three-dimensional nanostructures formed from geometrically constraining (AB) star block copolymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Kim Y, Kumagai A, Hu X, Shi AC, Li B, Jinnai H, Char K. Self-Assembled Morphologies of Lamella-Forming Block Copolymers Confined in Conical Nanopores. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Youngkeol Kim
- The National Creative Research Initiative Center for Intelligent Hybrids, The WCU Program of Chemical Convergence for Energy & Environment, School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Akemi Kumagai
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Xiejun Hu
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Baohui Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hiroshi Jinnai
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Kookheon Char
- The National Creative Research Initiative Center for Intelligent Hybrids, The WCU Program of Chemical Convergence for Energy & Environment, School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
43
|
Xu JP, Zhu JT. Block Copolymer Colloidal Particles with Unique Structures through Three-dimensional Confined Assembly and Disassembly. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2294-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Cui T, Li X, Dong B, Li X, Guo M, Wu L, Li B, Li H. Janus onions of block copolymers via confined self-assembly. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Wu J, Wang Z, Yin Y, Jiang R, Li B. Laterally Nanostructured Vesicles, Polygonal Sheets, and Anisotropically Patched Micelles from Solution-State Self-Assembly of Miktoarm Star Quaterpolymers: A Simulation Study. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaping Wu
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Zheng Wang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yuhua Yin
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Run Jiang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Baohui Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| |
Collapse
|
46
|
Zhang D, Shao Z, Hu W, Xu Y. Self-assembly of (A2B2)5 multigraft block copolymer: The length scale and phase transition. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Zhang Q, Qiang Y, Duan C, Li W. Single Helix Self-Assembled by Frustrated ABC 2 Branched Terpolymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yicheng Qiang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Chao Duan
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
48
|
Xia Y, Li W. Defect-free hexagonal patterns formed by AB diblock copolymers under triangular confinement. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
|
50
|
Zhang Q, Gu J, Zhang L, Lin J. Diverse chiral assemblies of nanoparticles directed by achiral block copolymers via nanochannel confinement. NANOSCALE 2019; 11:474-484. [PMID: 30566160 DOI: 10.1039/c8nr07036a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is a challenging task to realize large-area manufacture of chiral geometries of nanoparticles in solid-state materials, which exhibit strongly chiroptical responses in the visible and near-infrared ranges. Herein, novel nanocomposites, made from mixtures of achiral block copolymers and nanoparticles in a geometrically confined environment, are conceptually proposed to construct the chiral assemblies of nanoparticles through a joint theoretical-calculation framework and experimental discussion. It is found that the nanochannel-confined block copolymers self-assemble into a family of intrinsically chiral architectures, which serve as structural scaffolds to direct the chiral arrangement of nanoparticles. Through calculations of chiral order parameters and simulations of discrete dipole approximation, it is further demonstrated that certain members of this family of nanoparticle assemblies exhibit intense chiroptical activity, which can be tailored by the nanochannel radius and the nanoparticle loading. These findings highlight the multiple levels of structural control over a class of chiral assemblies of nanoparticles and the functionalities of emerging materials via careful design and selection of nanocomposites.
Collapse
Affiliation(s)
- Qian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | |
Collapse
|