1
|
Gamma-ray emission from wakefield-accelerated electrons wiggling in a laser field. Sci Rep 2019; 9:2531. [PMID: 30792410 PMCID: PMC6385269 DOI: 10.1038/s41598-019-38777-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
Ultra-fast synchrotron radiation emission can arise from the transverse betatron motion of an electron in a laser plasma wakefield, and the radiation spectral peak is limited to tens of keV. Here, we present a new method for achieving high-energy radiation via accelerated electrons wiggling in an additional laser field whose intensity is one order of magnitude higher than that for the self-generated transverse field of the bubble, resulting in an equivalent wiggler strength parameter K increase of approximately twenty times. By calculating synchrotron radiation, we acquired a peak brightness for the case of the laser wiggler field of 1.2 × 1023 ph/s/mrad2/mm2/0.1%BW at 1 MeV. Such a high brilliance and ultra-fast gamma-ray source could be applied to time-resolved probing of dense materials and the production of medical radioisotopes.
Collapse
|
2
|
Vafaei-Najafabadi N, Marsh KA, Clayton CE, An W, Mori WB, Joshi C, Lu W, Adli E, Corde S, Litos M, Li S, Gessner S, Frederico J, Fisher AS, Wu Z, Walz D, England RJ, Delahaye JP, Clarke CI, Hogan MJ, Muggli P. Beam loading by distributed injection of electrons in a plasma wakefield accelerator. PHYSICAL REVIEW LETTERS 2014; 112:025001. [PMID: 24484020 DOI: 10.1103/physrevlett.112.025001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Indexed: 06/03/2023]
Abstract
We show through experiments and supporting simulations that propagation of a highly relativistic and dense electron bunch through a plasma can lead to distributed injection of electrons, which depletes the accelerating field, i.e., beam loads the wake. The source of the injected electrons is ionization of the second electron of rubidium (Rb II) within the wake. This injection of excess charge is large enough to severely beam load the wake, and thereby reduce the transformer ratio T. The reduction of the average T with increasing beam loading is quantified for the first time by measuring the ratio of peak energy gain and loss of electrons while changing the beam emittance. Simulations show that beam loading by Rb II electrons contributes to the reduction of the peak accelerating field from its weakly loaded value of 43 GV/m to a strongly loaded value of 26 GV/m.
Collapse
Affiliation(s)
- N Vafaei-Najafabadi
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - K A Marsh
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - C E Clayton
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - W An
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - W B Mori
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, California 90095, USA and Department of Physics and astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | - W Lu
- Department of Physics and astronomy, University of California Los Angeles, Los Angeles, California 90095, USA and Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - E Adli
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA and Department of Physics, University of Oslo, 0316 Oslo, Norway
| | - S Corde
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M Litos
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Li
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Gessner
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J Frederico
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A S Fisher
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Z Wu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D Walz
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - R J England
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J P Delahaye
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - C I Clarke
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M J Hogan
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - P Muggli
- Max Planck Institute for Physics, 80805 Munich, Germany
| |
Collapse
|
3
|
Gholizadeh R, Katsouleas T, Muggli P, Huang C, Mori W. Preservation of beam emittance in the presence of ion motion in future high-energy plasma-wakefield-based colliders. PHYSICAL REVIEW LETTERS 2010; 104:155001. [PMID: 20481996 DOI: 10.1103/physrevlett.104.155001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Indexed: 05/29/2023]
Abstract
The preservation of beam quality in a plasma wakefield accelerator driven by ultrahigh intensity and ultralow emittance beams, characteristic of future particle colliders, is a challenge. The electric field of these beams leads to plasma ions motion, resulting in a nonlinear focusing force and emittance growth of the beam. We propose to use an adiabatic matching section consisting of a short plasma section with a decreasing ion mass to allow for the beam to remain matched to the focusing force. We use analytical models and numerical simulations to show that the emittance growth can be significantly reduced.
Collapse
Affiliation(s)
- R Gholizadeh
- University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | |
Collapse
|
4
|
Nerush E, Kostyukov I. Radiation emission by extreme relativistic electrons and pair production by hard photons in a strong plasma wakefield. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:057401. [PMID: 17677200 DOI: 10.1103/physreve.75.057401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Indexed: 05/16/2023]
Abstract
The radiation spectrum of extreme relativistic electrons and the probability of electron-positron pair production by energetic photons in a strong plasma wakefield are derived in the framework of a semiclassical approach. It is shown that the radiation losses of a relativistic electron in the plasma wakefield scale proportionally to epsilon2/3 in the quantum limit when the energy of the radiated photon becomes close to the electron energy epsilon . The quantum effects will play a key role in future plasma-based accelerators operating at ultrahigh electron energy.
Collapse
Affiliation(s)
- E Nerush
- Institute of Applied Physics, Russian Academy of Science, 46 Uljanov Street, 603950 Nizhny Novgorod, Russia
| | | |
Collapse
|
5
|
Blumenfeld I, Clayton CE, Decker FJ, Hogan MJ, Huang C, Ischebeck R, Iverson R, Joshi C, Katsouleas T, Kirby N, Lu W, Marsh KA, Mori WB, Muggli P, Oz E, Siemann RH, Walz D, Zhou M. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 2007; 445:741-4. [PMID: 17301787 DOI: 10.1038/nature05538] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 12/13/2006] [Indexed: 11/09/2022]
Abstract
The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of approximately 52 GV m(-1). This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a metre for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.
Collapse
Affiliation(s)
- Ian Blumenfeld
- Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|