1
|
Hong H, Habib A, Bi L, Qais DS, Wen L. Hollow Cathode Discharge Ionization Mass Spectrometry: Detection, Quantification and Gas Phase Ion-Molecule Reactions of Explosives and Related Compounds. Crit Rev Anal Chem 2024; 54:148-174. [PMID: 35467991 DOI: 10.1080/10408347.2022.2067467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mass spectrometry (MS) has become an essential analytical method in every sector of science and technology. Because of its unique ability to provide direct molecular structure information on analytes, an extra method is rarely required. This review describes fabrication of a variable-pressure hollow cathode discharge (HCD) ion source for MS in detection, quantification and investigation of gas-phase ion molecule reactions of explosives and related compounds using air as a carrier gas. The HCD ion source has been designed in such a way that by altering the ion source pressures, the system can generate both HCD and conventional GD. This design enables for the selective detection and quantification of explosives at trace to ultra-trace levels. The pressure-dependent HCD ion source has also been used to investigate ion-molecule reactions in the gas phase of explosives and related compounds. The mechanism of ion formation in explosive reactions is also discussed.
Collapse
Affiliation(s)
- Huanhuan Hong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | | | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Falcinelli S, Vecchiocattivi F, Pirani F. The topology of the reaction stereo-dynamics in chemi-ionizations. Commun Chem 2023; 6:30. [PMID: 36782019 PMCID: PMC9925729 DOI: 10.1038/s42004-023-00830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Details on the stereo-dynamic topology of chemi-ionizations highlight the role of the centrifugal barrier of colliding reactants: it acts as a selector of the orbital quantum number effective for reaction in a state-to-state treatment. Here, an accurate internally consistent formulation of the Optical interaction potentials, obtained by the combined analysis of scattering and spectroscopic experimental findings, casts light on structure, energy and angular momentum couplings of the precursor (pre-reactive) state controlling the stereo-dynamics of prototypical chemi-ionization reactions. The closest approach (turning point) of reagents, is found to control the relative weight of two different reaction mechanisms: (i) A direct mechanism stimulated by exchange chemical forces mainly acting at short separation distances and high collision energy; (ii) An indirect mechanism, caused by the combination of weak chemical and physical forces dominant at larger distances, mainly probed at low collision energy, that can be triggered by a virtual photon exchange between reagents.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy.
| | - Franco Vecchiocattivi
- grid.9027.c0000 0004 1757 3630Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Fernando Pirani
- grid.9027.c0000 0004 1757 3630Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy ,grid.9027.c0000 0004 1757 3630Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
3
|
Tanteri S, Gordon SDS, Zou J, Osterwalder A. Study of He*/Ne*+Ar, Kr, N 2, H 2, D 2 Chemi-Ionization Reactions by Electron Velocity-Map Imaging. J Phys Chem A 2021; 125:10021-10034. [PMID: 34762426 DOI: 10.1021/acs.jpca.1c07232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemi-ionization of Ar, Kr, N2, H2, and D2 by Ne(3P2) and of Ar, Kr, and N2 by He(3S1) was studied by electron velocity map imaging (e-VMI) in a crossed molecular beam experiment. A curved magnetic hexapole was used to state-select the metastable species. Collision energies of 60 meV were obtained by individually controlling the beam velocities of both reactants. The chemi-ionization of atoms and molecules can proceed along different channels, among them Penning ionization and associative ionization. The evolution of the reaction is influenced by the internal redistribution of energy, which happens at the first reaction step that involves the emission of an electron. We designed and built an e-VMI spectrometer in order to investigate the electron kinetic energy distribution, which is related to the internal state distribution of the ionic reaction products. The analysis of the electron kinetic energy distributions allows an estimation of the ratio between the two-reaction channel Penning and associative ionization. In the molecular cases the vibrational or electronic excitation enhanced the conversion of internal energy into the translational energy of the forming ions, thus influencing the reaction outcome.
Collapse
Affiliation(s)
- Silvia Tanteri
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sean D S Gordon
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Junwen Zou
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Andreas Osterwalder
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Falcinelli S, Vecchiocattivi F, Farrar JM, Pirani F. Chemi-Ionization Reactions and Basic Stereodynamical Effects in Collisions of Atom-Molecule Reagents. J Phys Chem A 2021; 125:3307-3315. [PMID: 33853326 PMCID: PMC8154608 DOI: 10.1021/acs.jpca.1c00688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Indexed: 12/02/2022]
Abstract
A new theoretical method, developed by our laboratory to describe the microscopic dynamics of gas-phase elementary chemi-ionization reactions, has been applied recently to study prototype atom-atom processes involving reactions between electronically excited metastable Ne*(3P2,0) and heavier noble gas atoms. Important aspects of electronic rearrangement selectivity have been emphasized that suggested the existence of two fundamental microscopic reaction mechanisms. The distinct mechanisms, which are controlled by intermolecular forces of chemical and noncovalent nature respectively, emerge under different conditions, and their balance depends on the collision energy regime investigated. The present paper provides the first step for the extension of the method to cases involving molecules of increasing complexity, whose chemi-ionization reactions are of relevance in several fields of basic and applied researches. The focus is here on the reactions of Ne* with simple inorganic molecules as Cl2 and NH3, and the application of the method discloses relevant features of the reaction microscopic evolution. In particular, this study shows that the balance of two fundamental reaction mechanisms depends not only on the collision energy and on the relative orientation of reagents but also on the orbital angular momentum of each collision complex. The additional insights so emphasized are of general relevance to assess in detail the stereodynamics of many other elementary processes.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Department
of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Franco Vecchiocattivi
- Department
of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - James M. Farrar
- Department
of Chemistry, University of Rochester, 14627 Rochester, New York, United States
| | - Fernando Pirani
- Department
of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
5
|
Habib A, Bi L, Hong H, Wen L. Challenges and Strategies of Chemical Analysis of Drugs of Abuse and Explosives by Mass Spectrometry. Front Chem 2021; 8:598487. [PMID: 33537286 PMCID: PMC7847941 DOI: 10.3389/fchem.2020.598487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023] Open
Abstract
In analytical science, mass spectrometry (MS) is known as a "gold analytical tool" because of its unique character of providing the direct molecular structural information of the relevant analyte molecules. Therefore, MS technique has widely been used in all branches of chemistry along with in proteomics, metabolomics, genomics, lipidomics, environmental monitoring etc. Mass spectrometry-based methods are very much needed for fast and reliable detection and quantification of drugs of abuse and explosives in order to provide fingerprint information for criminal investigation as well as for public security and safety at public places, respectively. Most of the compounds exist as their neutral form in nature except proteins, peptides, nucleic acids that are in ionic forms intrinsically. In MS, ion source is the heart of the MS that is used for ionizing the electrically neutral molecules. Performance of MS in terms of sensitivity and selectivity depends mainly on the efficiency of the ionization source. Accordingly, much attention has been paid to develop efficient ion sources for a wide range of compounds. Unfortunately, none of the commercial ion sources can be used for ionization of different types of compounds. Moreover, in MS, analyte molecules must be released into the gaseous phase and then ionize by using a suitable ion source for detection/quantification. Under these circumstances, fabrication of new ambient ion source and ultrasonic cutter blade-based non-thermal and thermal desorption methods have been taken into account. In this paper, challenges and strategies of mass spectrometry analysis of the drugs of abuse and explosives through fabrication of ambient ionization sources and new desorption methods for non-volatile compounds have been described. We will focus the literature progress mostly in the last decade and present our views for the future study.
Collapse
Affiliation(s)
- Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- China Innovation Instrument Co., Ltd., Ningbo, China
| | - Huanhuan Hong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- China Innovation Instrument Co., Ltd., Ningbo, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- China Innovation Instrument Co., Ltd., Ningbo, China
| |
Collapse
|
6
|
Falcinelli S, Farrar JM, Vecchiocattivi F, Pirani F. Quantum-State Controlled Reaction Channels in Chemi-ionization Processes: Radiative (Optical-Physical) and Exchange (Oxidative-Chemical) Mechanisms. Acc Chem Res 2020; 53:2248-2260. [PMID: 32930573 PMCID: PMC8011800 DOI: 10.1021/acs.accounts.0c00371] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 01/29/2023]
Abstract
ConspectusMost chemical processes are triggered by electron or charge transfer phenomena (CT). An important class of processes involving CT are chemi-ionization reactions. Such processes are very common in nature, involving neutral species in ground or excited electronic states with sufficient energy (X*) to yield ionic products, and are considered as the primary initial step in flames. They are characterized by pronounced electronic rearrangements that take place within the collisional complex (X···M)* formed by approaching reagents, as shown by the following scheme, where M is an atomic or molecular target: X* + M → (X···M)* → [(X+···M) ↔ (X···M+)]e- → via e - CT (X···M)+ + e- → final ions.Despite their important role in fundamental and applied research, combustion, plasmas, and astrochemistry, a unifying description of these basic processes is still lacking. This Account describes a new general theoretical methodology that demonstrates, for the first time, that chemi-ionization reactions are prototypes of gas phase oxidation processes occurring via two different microscopic mechanisms whose relative importance varies with collision energy, Ec, and separation distance, R. These mechanisms are illustrated for simple collisions involving Ne*(3P2,0) and noble gases (Ng). In thermal and hyperthermal collisions probing interactions at intermediate and short R, the transition state [(Ne···Ng)+]e- is a molecular species described as a molecular ion core with an orbiting Rydberg electron in which the neon reagent behaves as a halogen atom (i.e., F) with high electron affinity promoting chemical oxidation. Conversely, subthermal collisions favor a different reaction mechanism: Ng chemi-ionization proceeds through another transition state [Ne*······Ng], a weakly bound diatomic-lengthened complex where Ne* reagent, behaving as a Na atom, loses its metastability and stimulates an electron ejection from M by a concerted emission-absorption of a "virtual" photon. This is a physical radiative mechanism promoting an effective photoionization. In the thermal regime of Ec, there is a competition between these two mechanisms. The proposed method overcomes previous approaches for the following reasons: (1) it is consistent with all assumptions invoked in previous theoretical descriptions dating back to 1970; (2) it provides a simple and general description able to reproduce the main experimental results from our and other laboratories during last 40 years; (3) it demonstrates that the two "exchange" and "radiative" mechanisms are simultaneously present with relative weights that change with Ec (this viewpoint highlights the fact that the "canonical" chemical oxidation process, dominant at high Ec, changes its nature in the subthermal regime to a direct photoionization process; therefore, it clarifies differences between the cold chemistry of terrestrial and interstellar environments and the energetic one of combustion and flames); (4) the proposed method explicitly accounts for the influence of the degree of valence orbital alignment on the selective role of each reaction channel as a function of Ec and also permits a description of the collision complex, a rotating adduct, in terms of different Hund's cases of angular momentum couplings that are specific for each reaction channel; (5) finally, the method can be extended to reaction mechanisms of redox, acid-base, and other important condensed phase reactions.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Dipartimento
di Ingegneria Civile ed Ambientale, Università
di Perugia, 06125 Perugia, Italy
| | - James M. Farrar
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Franco Vecchiocattivi
- Dipartimento
di Ingegneria Civile ed Ambientale, Università
di Perugia, 06125 Perugia, Italy
| | - Fernando Pirani
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
di Perugia, 06123 Perugia, Italy
- Istituto
di Scienze e Tecnologie Chimiche “G. Natta” CNR-SCITEC, 06123 Perugia, Italy
| |
Collapse
|
7
|
Affiliation(s)
- Sean D. S. Gordon
- Institute for Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Present address: EPFL Innovation Park, Building C, 1015 Lausanne, Switzerland
| | - Andreas Osterwalder
- Institute for Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
8
|
Ohayon B, Rahangdale H, Chocron J, Mishnayot Y, Kosloff R, Heber O, Ron G. Imaging Recoil Ions from Optical Collisions between Ultracold, Metastable Neon Isotopes. PHYSICAL REVIEW LETTERS 2019; 123:063401. [PMID: 31491183 DOI: 10.1103/physrevlett.123.063401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/12/2019] [Indexed: 06/10/2023]
Abstract
We present an experimental scheme that combines the well-established method of velocity-map imaging with a cold trapped metastable neon target. The device is used for obtaining the branching ratios and recoil-ion energy distributions for the penning ionization process in optical collisions of ultracold metastable neon. The potential depth of the highly excited dimer potential is extracted and compared with theoretical calculations. The simplicity to construct, characterize, and apply such a device makes it a unique tool for the low-energy nuclear physics community, enabling opportunities for precision measurements in nuclear decays of cold, trapped, short-lived radioactive isotopes.
Collapse
Affiliation(s)
- B Ohayon
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| | - H Rahangdale
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| | - J Chocron
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| | - Y Mishnayot
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
- Soreq Nuclear Research Center, Yavne 81800, Israel
| | - R Kosloff
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - O Heber
- The Weizmann Institute of Science, Rehovot 76100, Israel
| | - G Ron
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Gordon SDS, Osterwalder A. Energy and orientation independence of the channel branching in Ne* + ND 3 chemi-ionisation. Phys Chem Chem Phys 2019; 21:14306-14310. [PMID: 30672916 DOI: 10.1039/c8cp06666c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Collisions of excited neon atoms with ammonia molecules can lead to two reaction processes, dissociative ionisation and Penning ionisation. Both processes result in the ionisation of the ammonia molecule and redistribution of the electronic energy into the internal ammonia ion rovibrational modes. We performed energy dependent, crossed-beam stereodynamics studies of the branching ratio between the two ionisation processes. It was found that the branching ratio is totally and completely insensitive to both the neon orientation and the collision energy across the range we sampled, 370-520 cm-1. The total lack of stereodynamics can be explained by the structure of the ammonia and that its orientation, which we do not attempt to control, is the critical factor in the reaction outcome.
Collapse
Affiliation(s)
- Sean D S Gordon
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Andreas Osterwalder
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Falcinelli S, Pirani F, Candori P, Brunetti BG, Farrar JM, Vecchiocattivi F. A New Insight on Stereo-Dynamics of Penning Ionization Reactions. Front Chem 2019; 7:445. [PMID: 31275926 PMCID: PMC6591474 DOI: 10.3389/fchem.2019.00445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/31/2019] [Indexed: 12/25/2022] Open
Abstract
Recent developments in the experimental study of Penning ionization reactions are presented here to cast light on basic aspects of the stereo-dynamics of the microscopic mechanisms involved. They concern the dependence of the reaction probability on the relative orientation of the atomic and molecular orbitals of reagents and products. The focus is on collisions between metastable Ne*(3P2, 0) atoms with other noble gas atoms or molecules, for which play a crucial role both the inner open-shell structure of Ne* and the HOMO orbitals of the partner. Their mutual orientation with respect to the intermolecular axis controls the characteristics of the intermolecular potential, which drives the collision dynamics and the reaction probability. The investigation of ionization processes of water, the prototype of hydrogenated molecules, suggested that the ground state of water ion is produced when Ne* approaches H2O perpendicularly to its plane. Conversely, collisions addressed toward the lone pair, aligned along the water C2v symmetry axis, generates electronically excited water ions. However, obtained results refer to a statistical/random orientation of the open shell ionic core of Ne*. Recently, the attention focused on the ionization of Kr or Xe by Ne*, for which we have been able to characterize the dependence on the collision energy of the branching ratio between probabilities of spin orbit resolved elementary processes. The combined analysis of measured PIES spectra suggested the occurrence of contributions from four different reaction channels, assigned to two distinct spin-orbit states of the Ne*(3P2, 0) reagent and two different spin-orbit states of the ionic M+(2P3/2, 1/2) products (M = Kr, Xe). The obtained results emphasized the reactivity change of 3P0 atoms with respect to 3P2, in producing ions in 2P3/2 and 2P1/2 sublevels, as a function of the collision energy. These findings have been assumed to arise from a critical balance of adiabatic and non-adiabatic effects that control formation and electronic rearrangement of the collision complex, respectively. From these results we are able to characterize for the first time, according to our knowledge, the state to state reaction probability for the ionization of Kr and Xe by Ne* in both 3P2 and 3P0 sublevels.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | - Fernando Pirani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Pietro Candori
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | - Brunetto G Brunetti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - James M Farrar
- Department of Chemistry, University of Rochester, Rochester, NY, United States
| | - Franco Vecchiocattivi
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Falcinelli S, Vecchiocattivi F, Pirani F. The electron couplings in the transition states: The stereodynamics of state to state autoionization processes. J Chem Phys 2019; 150:044305. [PMID: 30709283 DOI: 10.1063/1.5051174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Measurements of the kinetic energy distribution of electrons, emitted in collision between Ne*(3P2,0) and Kr(1S0) and Xe(1S0), have been performed in a crossed molecular beam apparatus which employs a mass spectrometer and a hemispherical electron analyzer as detectors. The analysis of the obtained experimental results provides new insights on electronic rearrangements and electronic angular momentum coupling effects that determine relevant properties of the transition state of autoionization processes, and that we have found useful to classify as adiabatic and non-adiabatic effects. In particular, while the adiabatic effects control sequence, energy, and symmetry of quantum states accessible to both reagents and products in the probed collision energy range, the non-adiabatic ones trigger the passage from entrance to exit channels. The obtained results are important not only to compact previous theoretical schemes of autoionization reactions in a unified representation but also to cast light on the role of electronic rearrangements within the transition state of many other types of chemical processes that are more difficult to characterize.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Dipartimento di Ingegneria Civile ed Ambientale, Università di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Franco Vecchiocattivi
- Dipartimento di Ingegneria Civile ed Ambientale, Università di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
12
|
Guerrero RD, Castellanos MA, Arango CA. Heuristic optimization of analytic laser pulses for vibrational stabilization of ultracold KRb. J Chem Phys 2018; 149:244110. [PMID: 30599711 DOI: 10.1063/1.5052019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We proposed a methodology that allows to maximize the population transfer from a high vibrational state of the a 3Σ+ triplet state to the vibrational ground state of the X 1Σ+ singlet state though the optimization of one pump and one dump laser pulses. The pump pulse is optimized using a fitness function, heuristically improved, that includes the effect of the spin-orbit coupling of the KRb [b-A]-scheme. The dump pulse is optimized to maximize the population transfer to the ground state. We performed a comparison with the case in which the pump and dump pulses are optimized to maximize the population transfer to the ground state employing a genetic algorithm with a single fitness function. The heuristic approach turned out to be 70% more efficient than a quantum optimal control optimization employing a single fitness function. The method proposed provides simple pulses that have an experimental realm.
Collapse
Affiliation(s)
- Rubén D Guerrero
- PULSE Institute and Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | - Carlos A Arango
- Department of Chemical Sciences, Universidad Icesi, Cali, Colombia
| |
Collapse
|
13
|
Omiste JJ, Floß J, Brumer P. Coherent Control of Penning and Associative Ionization: Insights from Symmetries. PHYSICAL REVIEW LETTERS 2018; 121:163405. [PMID: 30387663 DOI: 10.1103/physrevlett.121.163405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Coherent control of reactive atomic and molecular collision processes remains elusive experimentally due to quantum interference-based requirements. Here, with insights from symmetry conditions, a viable method for controlling Penning and associative ionization in atomic collisions is proposed. Computational applications to He^{*}(^{3}S)-Li(^{2}S) and Ne^{*}(^{3}P_{2})-Ar(^{1}S_{0}) show extensive control over the ionization processes under experimentally feasible conditions.
Collapse
Affiliation(s)
- Juan J Omiste
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Johannes Floß
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
14
|
Falcinelli S, Vecchiocattivi F, Pirani F. Adiabatic and Nonadiabatic Effects in the Transition States of State to State Autoionization Processes. PHYSICAL REVIEW LETTERS 2018; 121:163403. [PMID: 30387669 DOI: 10.1103/physrevlett.121.163403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 06/08/2023]
Abstract
The energy distribution of electrons, emitted from collisions between Ne^{*}(^{3}P_{2,0}) and Kr(^{1}S_{0}), have been measured under high resolution conditions in a crossed molecular beam apparatus containing a hemispherical electron analyzer as detector. The experimental results provide new insights on the electronic adiabatic and nonadiabatic effects in the stereodynamics of state to state atomic and molecular collisions, controlling relevant properties of the transition state of autoionization processes. In particular, while the adiabatic effects determine sequence, energy, and symmetry of quantum states accessible both to reagents and products, the nonadiabatic effects trigger the passage from entrance to exit channels.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Dipartimento di Ingegneria Civile ed Ambientale, Università di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Franco Vecchiocattivi
- Dipartimento di Ingegneria Civile ed Ambientale, Università di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
15
|
Quantum-state-controlled channel branching in cold Ne( 3P 2)+Ar chemi-ionization. Nat Chem 2018; 10:1190-1195. [PMID: 30297754 DOI: 10.1038/s41557-018-0152-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/31/2018] [Indexed: 11/08/2022]
Abstract
A prerequisite to gain a complete understanding of the most basic aspects of chemical reactions is the ability to perform experiments with complete control over the reactant degrees of freedom. By controlling these, details of a reaction mechanism can be investigated and ultimately manipulated. Here, we present a study of chemi-ionization-a fundamental energy-transfer reaction-under completely controlled conditions. The collision energy of the reagents was tuned from 0.02 K to 1,000 K, with the orientation of the excited Ne atom relative to Ar fully specified by an external magnetic field. Chemi-ionization of Ne(3P2) and Ar in these conditions enables a detailed investigation of how the reaction proceeds, and provides us with a means to control the branching ratio between the two possible reaction outcomes. The merged-beam experimental technique used here allows access to a low-energy regime in which the atoms dynamically reorient into a favourable configuration for reaction, irrespective of their initial orientations.
Collapse
|
16
|
Zou J, Gordon SDS, Tanteri S, Osterwalder A. Stereodynamics of Ne( 3P 2) reacting with Ar, Kr, Xe, and N 2. J Chem Phys 2018; 148:164310. [PMID: 29716200 DOI: 10.1063/1.5026952] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stereodynamics experiments of Ne(3P2) reacting with Ar, Kr, Xe, and N2 leading to Penning and associative ionization have been performed in a crossed molecular beam apparatus. A curved magnetic hexapole was used to state-select and polarize Ne(3P2) atoms which were then oriented in a rotatable magnetic field and crossed with a beam of Ar, Kr, Xe, or N2. The ratio of associative to Penning ionization was recorded as a function of the magnetic field direction for collision energies between 320 cm-1 and 500 cm-1. Reactivities are obtained for individual states that differ only in Ω, the projection of the neon total angular momentum vector on the inter-particle axis. The results are rationalized on the basis of a model involving a long-range and a short-range reaction mechanism. Substantially lower probability for associative ionization was observed for N2, suggesting that predissociation plays a critical role in the overall reaction pathway.
Collapse
Affiliation(s)
- Junwen Zou
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sean D S Gordon
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Silvia Tanteri
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andreas Osterwalder
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Gordon SDS, Zou J, Tanteri S, Jankunas J, Osterwalder A. Energy Dependent Stereodynamics of the Ne(^{3}P_{2})+Ar Reaction. PHYSICAL REVIEW LETTERS 2017; 119:053001. [PMID: 28949716 DOI: 10.1103/physrevlett.119.053001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Indexed: 06/07/2023]
Abstract
The stereodynamics of the Ne(^{3}P_{2})+Ar Penning and associative ionization reactions have been studied using a crossed molecular beam apparatus. The experiment uses a curved magnetic hexapole to polarize the Ne(^{3}P_{2}), which is then oriented with a shaped magnetic field in the region where it intersects with a beam of Ar(^{1}S). The ratios of Penning to associative ionization were recorded over a range of collision energies from 320 to 500 cm^{-1} and the data were used to obtain Ω state dependent reactivities for the two reaction channels. These reactivities were found to compare favorably to those predicted in the theoretical work of Brumer et al.
Collapse
Affiliation(s)
- Sean D S Gordon
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Junwen Zou
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Silvia Tanteri
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Justin Jankunas
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andreas Osterwalder
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Bergmann K, Vitanov NV, Shore BW. Perspective: Stimulated Raman adiabatic passage: The status after 25 years. J Chem Phys 2015; 142:170901. [PMID: 25956078 DOI: 10.1063/1.4916903] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The first presentation of the STIRAP (stimulated Raman adiabatic passage) technique with proper theoretical foundation and convincing experimental data appeared 25 years ago, in the May 1st, 1990 issue of The Journal of Chemical Physics. By now, the STIRAP concept has been successfully applied in many different fields of physics, chemistry, and beyond. In this article, we comment briefly on the initial motivation of the work, namely, the study of reaction dynamics of vibrationally excited small molecules, and how this initial idea led to the documented success. We proceed by providing a brief discussion of the physics of STIRAP and how the method was developed over the years, before discussing a few examples from the amazingly wide range of applications which STIRAP now enjoys, with the aim to stimulate further use of the concept. Finally, we mention some promising future directions.
Collapse
Affiliation(s)
- Klaas Bergmann
- Fachbereich Physik und Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Nikolay V Vitanov
- Department of Physics, St. Kliment Ohridski University of Sofia, James Bourchier 5 Blvd., 1164 Sofia, Bulgaria
| | - Bruce W Shore
- 618 Escondido Circle, Livermore, California 94550, USA
| |
Collapse
|
19
|
Mukherjee N, Dong W, Zare RN. Coherent superposition of M-states in a single rovibrational level of H2 by Stark-induced adiabatic Raman passage. J Chem Phys 2014; 140:074201. [PMID: 24559344 DOI: 10.1063/1.4865131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We prepare an ensemble of isolated rovibrationally excited (v = 1, J = 2) H2 molecules in a phase-locked superposition of magnetic sublevels M using Stark-induced adiabatic Raman passage with linearly polarized single-mode pump (at 532 nm, ∼6 ns pulse duration, 200 mJ/pulse) and Stokes (699 nm, ∼4 ns pulse duration, 20 mJ/pulse) laser excitation. A biaxial superposition state, given by [line]ψ(t)⟩ = 1/√(2)[[line]ν = 1, J = 2, M = -2⟩ - [line]ν = 1, J = 2, M = +2⟩], is prepared with linearly but cross-polarized pump and Stokes laser pulses copropagating along the quantization z-axis. The degree of phase coherence is measured by using the O(2) line of the H2 E,F-X (0,1) band via 2 + 1 resonance enhanced multiphoton ionization (REMPI) at 210.8 nm by recording interference fringes in the REMPI signal in a time-of-flight mass spectrometer as the direction of the UV laser polarization is rotated using a half-wave plate. Nearly 60% population transfer from H2 (v = 0, J = 0) ground state to the superposition state in H2 (v = 1, J = 2) is measured from the depletion of the Q(0) line of the E,F-X (0,0) band as the Stokes frequency is tuned across the (v = 0, J = 0) → (v = 1, J = 2) Raman resonance.
Collapse
Affiliation(s)
- Nandini Mukherjee
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | - Wenrui Dong
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| |
Collapse
|
20
|
Gong J, Brumer P. Indistinguishability and interference in the coherent control of atomic and molecular processes. J Chem Phys 2010; 132:054306. [PMID: 20136315 DOI: 10.1063/1.3304921] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The subtle and fundamental issue of indistinguishability and interference between independent pathways to the same target state is examined in the context of coherent control of atomic and molecular processes, with emphasis placed on possible "which-way" information due to quantum entanglement established in the quantum dynamics. Because quantum interference between independent pathways to the same target state occurs only when the independent pathways are indistinguishable, it is first shown that creating useful coherence between nondegenerate states of a molecule for subsequent quantum interference manipulation cannot be achieved by collisions between atoms or molecules that are prepared in momentum and energy eigenstates. Coherence can, however, be transferred from light fields to atoms or molecules. Using a particular coherent control scenario, it is shown that this coherence transfer and the subsequent coherent phase control can be readily realized by the most classical states of light, i.e., coherent states of light. It is further demonstrated that quantum states of light may suppress the extent of phase-sensitive coherent control by leaking out some which-way information while "incoherent interference control" scenarios proposed in the literature have automatically ensured the indistinguishability of multiple excitation pathways. The possibility of quantum coherence in photodissociation product states is also understood in terms of the disentanglement between photodissociation fragments. Results offer deeper insights into quantum coherence generation in atomic and molecular processes.
Collapse
Affiliation(s)
- Jiangbin Gong
- Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542, Republic of Singapore.
| | | |
Collapse
|
21
|
Jing H, Cheng J, Meystre P. Quantum noise in the collective abstraction reaction A + B2-->AB + B. PHYSICAL REVIEW LETTERS 2008; 101:073603. [PMID: 18764534 DOI: 10.1103/physrevlett.101.073603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Indexed: 05/26/2023]
Abstract
We demonstrate theoretically that the collective abstraction reaction A + B2-->AB + B can be realized efficiently with degenerate bosonic or fermionic matter waves. We show that this is dominated by quantum fluctuations, which are critical in triggering its initial stages with the appearance of macroscopic nonclassical correlations of the atomic and molecular fields as a result. This study opens up a promising new regime of quantum-degenerate matter-wave chemistry.
Collapse
Affiliation(s)
- H Jing
- B2 Institute and Department of Physics, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
22
|
|