2
|
Maksimovic N, Eilbott DH, Cookmeyer T, Wan F, Rusz J, Nagarajan V, Haley SC, Maniv E, Gong A, Faubel S, Hayes IM, Bangura A, Singleton J, Palmstrom JC, Winter L, McDonald R, Jang S, Ai P, Lin Y, Ciocys S, Gobbo J, Werman Y, Oppeneer PM, Altman E, Lanzara A, Analytis JG. Evidence for a delocalization quantum phase transition without symmetry breaking in CeCoIn 5. Science 2022; 375:76-81. [PMID: 34855511 DOI: 10.1126/science.aaz4566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The study of quantum phase transitions that are not clearly associated with broken symmetry is a major effort in condensed matter physics, particularly in regard to the problem of high-temperature superconductivity, for which such transitions are thought to underlie the mechanism of superconductivity itself. Here we argue that the putative quantum critical point in the prototypical unconventional superconductor CeCoIn5 is characterized by the delocalization of electrons in a transition that connects two Fermi surfaces of different volumes, with no apparent broken symmetry. Drawing on established theory of f-electron metals, we discuss an interpretation for such a transition that involves the fractionalization of spin and charge, a model that effectively describes the anomalous transport behavior we measured for the Hall effect.
Collapse
Affiliation(s)
- Nikola Maksimovic
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel H Eilbott
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tessa Cookmeyer
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fanghui Wan
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan Rusz
- Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
| | - Vikram Nagarajan
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shannon C Haley
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eran Maniv
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amanda Gong
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stefano Faubel
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ian M Hayes
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ali Bangura
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - John Singleton
- National High Magnetic Field Laboratory, Los Alamos, NM 97545, USA
| | | | - Laurel Winter
- National High Magnetic Field Laboratory, Los Alamos, NM 97545, USA
| | - Ross McDonald
- National High Magnetic Field Laboratory, Los Alamos, NM 97545, USA
| | - Sooyoung Jang
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ping Ai
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yi Lin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Samuel Ciocys
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jacob Gobbo
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yochai Werman
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter M Oppeneer
- Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
| | - Ehud Altman
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alessandra Lanzara
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James G Analytis
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Steglich F, Wirth S. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:084502. [PMID: 27376190 DOI: 10.1088/0034-4885/79/8/084502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a 'conventional', itinerant QCP can be well understood within Landau's paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an 'unconventional', local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.
Collapse
Affiliation(s)
- Frank Steglich
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany. Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | |
Collapse
|
13
|
Steglich F, Arndt J, Friedemann S, Krellner C, Tokiwa Y, Westerkamp T, Brando M, Gegenwart P, Geibel C, Wirth S, Stockert O. Superconductivity versus quantum criticality: what can we learn from heavy fermions? JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:164202. [PMID: 21386408 DOI: 10.1088/0953-8984/22/16/164202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two quantum critical point (QCP) scenarios are being discussed for different classes of antiferromagnetic (AF) heavy-fermion (HF) systems. In the itinerant one, where AF order is of the spin-density wave (SDW) type, the heavy 'composite' charge carriers keep their integrity at the QCP. The second one implies a breakdown of the Kondo effect and a disintegration of the composite fermions at the AF QCP. We discuss two isostructural compounds as exemplary materials for these two different scenarios: CeCu(2)Si(2) exhibits a three-dimensional (3D) SDW QCP and superconductivity, presumably mediated by SDW fluctuations, as strongly suggested by recent inelastic neutron scattering experiments. In Y bRh(2)Si(2), the AF QCP is found to coincide with a Kondo-destroying one. However, in the latter compound these two QCPs can be detached by varying the average unit-cell volume, e.g. through the application of chemical pressure, as realized by partial substitution of either Ir or Co for Rh. A comparison of CeCu(2)Si(2) and Y bRh(2)Si(2) indicates that the apparent differences in quantum critical behaviour go along with disparate behaviour concerning the (non-) existence of superconductivity (SC). No sign of SC could be detected in Y bRh(2)Si(2) down to mK temperatures. A potential correlation between the specific nature of the QCP and the occurrence of SC, however, requires detailed studies on further quantum critical HF superconductors, e.g. on β-Y bAlB(4), UBe(13), CeCoIn(5) and CeRhIn(5).
Collapse
Affiliation(s)
- F Steglich
- Max Planck Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, D-01187 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|