1
|
Abstract
In suitable bounded regions immersed in vacuum, time periodic wave solutions solving a full set of electrodynamics equations can be explicitly computed. Analytical expressions are available in special cases, whereas numerical simulations are necessary in more complex situations. The attention here is given to selected three-dimensional geometries, which are topologically equivalent to a toroid, where the behavior of the waves is similar to that of fluid-dynamics vortex rings. The results show that the shape of the sections of these rings depends on the behavior of the eigenvalues of a certain elliptic differential operator. Time-periodic solutions are obtained when at least two of such eigenvalues attain the same value. The solutions obtained are discussed in view of possible applications in electromagnetic whispering galleries or plasma physics.
Collapse
|
2
|
Du L, Man Z, Zhang Y, Min C, Zhu S, Yuan X. Manipulating orbital angular momentum of light with tailored in-plane polarization states. Sci Rep 2017; 7:41001. [PMID: 28112191 PMCID: PMC5253672 DOI: 10.1038/srep41001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/13/2016] [Indexed: 01/29/2023] Open
Abstract
Generally, polarization and phase are considered as two relatively independent parameters of light, and show little interaction when a light propagates in a homogeneous and isotropic medium. Here, we reveal that orbital angular momentum (OAM) of an optical vortex beam can be modulated by specially-tailored locally linear polarization states of light under a tightly-focusing conditon. We perform both theoretical and experimental studies of this interaction between vortex phase and vector polarization, and find that an arbitrary topological charge value of OAM can be achieved in principle through vector polarization modulation, in contrast to the spin-orbital conversion that yields only the ± ћ OAM values through circular polarization. We verify the modulation of optical OAM state with vector beams by observing the orbital rotation of trapped particles.
Collapse
Affiliation(s)
- Luping Du
- Nanophotonics Research Centre, Shenzhen University & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhongsheng Man
- School of Science, Shandong University of Technology, Zibo 255049, China
| | - Yuquan Zhang
- Nanophotonics Research Centre, Shenzhen University & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changjun Min
- Nanophotonics Research Centre, Shenzhen University & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Siwei Zhu
- Institute of Oncology, Tianjin Union Medicine Centre, Tianjin 300121, China
| | - Xiaocong Yuan
- Nanophotonics Research Centre, Shenzhen University & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Ju LB, Huang TW, Xiao KD, Wu GZ, Yang SL, Li R, Yang YC, Long TY, Zhang H, Wu SZ, Qiao B, Ruan SC, Zhou CT. Controlling multiple filaments by relativistic optical vortex beams in plasmas. Phys Rev E 2016; 94:033202. [PMID: 27739750 DOI: 10.1103/physreve.94.033202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 11/07/2022]
Abstract
Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.
Collapse
Affiliation(s)
- L B Ju
- Graduate School, China Academy of Engineering Physics, Beijing 100088, People's Republic of China.,Institute of Applied Physics and Computational Mathematics, Beijing 100094, People's Republic of China
| | - T W Huang
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - K D Xiao
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - G Z Wu
- Graduate School, China Academy of Engineering Physics, Beijing 100088, People's Republic of China
| | - S L Yang
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - R Li
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Y C Yang
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - T Y Long
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - H Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, People's Republic of China
| | - S Z Wu
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, People's Republic of China
| | - B Qiao
- HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - S C Ruan
- College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - C T Zhou
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, People's Republic of China.,HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing 100871, People's Republic of China.,College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
4
|
Hu K, Chen Z, Pu J. Tight focusing properties of hybridly polarized vector beams. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:1099-1104. [PMID: 22673441 DOI: 10.1364/josaa.29.001099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We theoretically investigate the tight focusing properties of hybridly polarized vector beams. Some numerical results are obtained to illustrate the intensity, phase, and polarization of tightly focused hybridly polarized vector beams. It is shown that the shape of the focal pattern may change from an elliptical beam to a ring focus with increasing radial index. The phase distribution around the tightly focused ring is shown to be the helical phase profile, indicating that the radial-variant spin angular momentum of hybridly polarized vector beams can be converted into the radial-variant orbital angular momentum.
Collapse
Affiliation(s)
- Kelei Hu
- College of Information Science and Engineering, Huaqiao University, Xiamen, Fujian, China
| | | | | |
Collapse
|
5
|
Panagiotopoulos P, Couairon A, Efremidis NK, Papazoglou DG, Tzortzakis S. Intense dynamic bullets in a periodic lattice. OPTICS EXPRESS 2011; 19:10057-10062. [PMID: 21643264 DOI: 10.1364/oe.19.010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Femtosecond filamentation inside a periodic lattice in air is numerically shown to form intense dynamic bullets. The long propagation distance of the bullet structure is primarily attributed to the effect of the lattice that regulates the competition between linear and nonlinear spatiotemporal effects in the region of normal dispersion.
Collapse
Affiliation(s)
- P Panagiotopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, PO Box 1527, 71110 Heraklion, Greece.
| | | | | | | | | |
Collapse
|
6
|
Wang XL, Chen J, Li Y, Ding J, Guo CS, Wang HT. Optical orbital angular momentum from the curl of polarization. PHYSICAL REVIEW LETTERS 2010; 105:253602. [PMID: 21231589 DOI: 10.1103/physrevlett.105.253602] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Indexed: 05/30/2023]
Abstract
We predict a new category of optical orbital angular momentum that is associated with the curl of polarization and a kind of vector field with radial-variant hybrid states of polarization that can carry such novel optical orbital angular momentum. We present a scheme for creating the desired vector fields. Optical trapping experiments validate that the vector fields, which have no additional phase vortex, exert torques to drive the orbital motion of the trapped isotropic microspheres.
Collapse
Affiliation(s)
- Xi-Lin Wang
- School of Physics and Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
7
|
Soto-Crespo JM, Akhmediev N, Mejia-Cortés C, Devine N. Dissipative ring solitons with vorticity. OPTICS EXPRESS 2009; 17:4236-4250. [PMID: 19293847 DOI: 10.1364/oe.17.004236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We study dissipative ring solitons with vorticity in the frame of the (2+1)-dimensional cubic-quintic complex Ginzburg-Landau equation. In dissipative media, radially symmetric ring structures with any vorticity m can be stable in a finite range of parameters. Beyond the region of stability, the solitons lose the radial symmetry but may remain stable, keeping the same value of the topological charge. We have found bifurcations into solitons with n-fold bending symmetry, with n independent on m. Solitons without circular symmetry can also display (m + 1)-fold modulation behaviour. A sequence of bifurcations can transform the ring soliton into a pulsating or chaotic state which keeps the same value of the topological charge as the original ring.
Collapse
Affiliation(s)
- J M Soto-Crespo
- Instituto de Optica, C.S.I.C., Serrano 121, 28006 Madrid, Spain.
| | | | | | | |
Collapse
|